
Typed Reductions of CLS⋆

Livio Bioglio

Dipartimento di Informatica, Università di Torino
bioglio.livio@educ.di.unito.it

Abstract. The calculus of looping sequences is a formalism for describing the
evolution of biological systems by means of term rewriting rules. We enrich
this calculus with a type discipline, derived from the requirement of certain
elements and the repellency of others, and a type semantic, based on rules
respecting different biological properties.

1 Introduction

Biologists usually describe biological systems by mathematical means, to reason
on the behaviour of the systems and to perform simulations: when the complex-
ity of the systems increase, these models become very difficult to manage. For
this motivation, it is began to use Computer Science formalisms for the descrip-
tion of biological systems [13], that moreover permits the application of analysis
methods that are practically unknown to biologists, such as static analysis and
model checking.
The most notable formalisms applied to or created for biological systems are
automata-based models [1,9], that permit the direct use of many verification
tools such as model checkers, rewrite systems [8,11], that can be easily under-
stood by biologists, and process calculi [13,14,12,7], that allows studying the
behaviour of a system componentwise.
Milazzo et al. [4,5,10] developed a new formalism, called Calculus of Looping
Sequences (CLS for short), for describing biological systems and their evolution.
CLS mixes rewrite systems, because it is based on term rewriting, and process
calculi, which uses some features, such as a commutative parallel composition
operator, and some semantic means, such as bisimulations. This permits to com-
bine the simplicity of notation of rewrite systems with the advantage of a form
of compositionality.
In nature, there may be elements that always require the presence of other ele-
ments, such as pairs of oxygen atoms, or that always exclude the presence other
ones, such as the blood type: it has inspired two extensions of CLS, proposed
in [2] and improved in [3], in which every element type has a set of elements
which are required by the element for its existence, and a set of elements whose
presence is forbidden by the element. In this paper we borrow the type system
in [3] to define a new typed semantic, that mixes up the semantics of [2] and [3].

⋆ This work was partly funded by the project BioBIT of the Regione Piemonte.

2 Typed CLS

For a definition of CLS formalism we refer to [4]: here we only give the definition
of patterns and terms, starting from a set E of elements.

Definition 1 (Patterns) Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
∣∣ (SP)

L ⌋P
∣∣ P |P

∣∣ X

SP ::= ǫ
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of E, and X, x̃ and x are term variables, sequence
variables and element variables, respectively. Terms are patterns without vari-
ables.

An example of CLS pattern is (a·x̃)L ⌋ y |Z: by applying the substitution

x̃ = b ·c, y = d, Z = e | f we obtain the CLS term (a·b·c)L ⌋ d | e | f , that de-
scribes a biological system in which a membrane, formed by the elements a, b
and c, containing the element d, is in juxtaposition with the elements e and f .

We classify every element in E , representing molecule or other basic biological
element, with a basic type, a type t which specifies the kind of the molecule: that
fixed typing is reported in Γ . For each basic type t ∈ Γ we assume to have a pair
of sets of basic types (Rt, Et), where t 6∈ Rt ∪ Et and Rt ∩ Et = ∅, saying that the
presence of elements of type t locally, that is in the same compartment, requires
and forbids the presence of elements whose type is in Rt and in Et, respectively.
The types are pairs (P, R), where P is the set of basic types of present elements,
and R is the set of basic types of required elements: the set of excluded elements
is implicitly given by EP =

⋃
t∈P

Et. Types are well formed, and pair of types
are compatible, if their constraints on required and excluded elements are not
contradictory; compatible types can be combined.

Definition 2 (Auxiliary definitions) – A type (P, R) is well formed if P ∩
EP = P ∩ R = R ∩ EP = ∅.

– Well formed types (P, R) and (P′, R′) are compatible (written (P, R) ⊲⊳ (P′, R′))
if EP ∩ P

′ = EP ∩ R
′ = ∅ and EP′ ∩ P = EP′ ∩ R = ∅.

– Given two compatible types (P, R) and (P′, R′) we define their conjunction
(P, R) ⊔ (P′, R′) by (P, R) ⊔ (P′, R′) = (P ∪ P

′, (R ∪ R
′) \ (P ∪ P

′)).

Basis are defined by:

∆ ::= ∅
∣∣ ∆,x : ({t}, Rt)

∣∣ ∆, η : (P, R)

where η denotes a sequence or term variable. A basis ∆ is well formed if all types
in the basis are well formed.

We check the safety of patterns, and so terms and sequences, using the typing
rules of Figure 1. All the rules are obvious except for the loop. In this rule we can
put a pattern P inside a looping sequence SP only if all the types required from P

are provided by SP : this is because if P gets inside a compartment (represented

∆, ρ : (P, R) ⊢ ρ : (P, R) (ρ) ∆ ⊢ ǫ : (∅, ∅) (ǫ)
a : t ∈ Γ

(a)
∆ ⊢ a : ({t}, Rt)

∆ ⊢ SP : (P, R) ∆ ⊢ SP : (P′, R′) (P, R) ⊲⊳ (P′, R′)
(seq)

∆ ⊢ SP ·SP ′ : ((P, R) ⊔ (P′, R′))

∆ ⊢ P : (P, R) ∆ ⊢ P : (P′, R′) (P, R) ⊲⊳ (P′, R′)
(parcomp)

∆ ⊢ P |P ′ : ((P, R) ⊔ (P′, R′))

∆ ⊢ SP : (P, R) ∆ ⊢ P : (P′, R′) (P, R) ⊲⊳ (P′, R′) and R
′ ⊆ P

(loop)
∆ ⊢ (SP)L ⌋P : (P, R \ P′)

Fig. 1. Typing rules for Present/Required Elements

by the looping sequence) it cannot interact any more with the environment.

We want to study only correct terms, whose type is well formed and whose
requirements are completely satisfied. We start from correct terms, so to reach
only correct terms we can require that a rewrite rule must not change the type
of a term. To do that the left and the right hand of a rewrite rule must have the
same type:

Definition 3 (∆-safe rules) A rewrite rule P1 7→ P2 is a ∆-safe rule if ∆ ⊢
P1 : (P, R) and ∆ ⊢ P2 : (P, R).

Since a rule is applied to the hole of a context, another way to assure cor-
rectness preservation, without type preservation, is to check if the term obtained
from a context by replacing the hole with a well typed term is correct:

Definition 4 (Typed Holes) Given a context C, and a well-formed type (P, R),
the type (P, R) is OK for the context C if X : (P, R) ⊢ C[X] : (P′, ∅) for some P

′.

So, if we want to reach correct terms, it is enough to apply to the context a
rule whose type of the right hand side is OK for that context:

Definition 5 (∆-(P, R)-rules) A rule P1 7→ P2 is a ∆-(P, R)-rule if ∆ ⊢ P2 :
(P, R).

An instantiation σ agrees with a basis ∆ (notation σ ∈ Σ∆) if ρ : (P, R) ∈ ∆

implies ⊢ σ(ρ) : (P, R).
We have found two ways to ensure correctness preservation: we can apply both∆-
safe rules inside arbitrary contexts, and ∆-(P, R)-rules inside (P, R) OK contexts.
The semantic for the type discipline therefore contains two rules, one for each
way:

Definition 6 (Typed Semantics) Given a finite set of rewrite rules R, the
typed semantics of CLS is the least relation closed with respect to ≡ and satis-
fying the following rules:

P1 7→ P2 is a ∆-safe rule P1σ 6≡ ǫ σ ∈ Σ∆ C ∈ C

C[P1σ] =⇒ C[P2σ]

P1 7→ P2 ∈ R is a ∆-(P, R) rule P1σ 6≡ ǫ

σ ∈ Σ∆ C ∈ C (P, R) is OK for C

C[P1σ] =⇒ C[P2σ]

As expected, reduction preserves typing, in the sense that the obtained term
is still typable and the set of required elements is always empty, even if the
new type can have a different set of present elements: this choice makes possible
typing creation and degradation of elements.

Theorem 1 If ⊢ T : (P, ∅) and T =⇒ T ′, then ⊢ T : (P′, ∅) for some P
′.

2.1 Type Inference

In order to infer both which rules are ∆-safe rules and which ones are ∆-(P, R)
rules, we use the machinery of principal typing [15].

We convene that for each variable x ∈ X there is an e-type variable ϕx

ranging over basic types, and for each variable η ∈ TV ∪ SV there are two
variables φη, ψη (called p-type variable and r-type variable) ranging over sets
of basic types. Moreover we convene that Φ ranges over unions and differences
of sets of basic types, e-type variables and p-type variables, and Ψ ranges over
unions and differences of sets of basic types and r-type variables.
A basis scheme Θ is a mapping from atomic variables to their e-type variables,
and from sequence and term variables to pairs of their p-type variables and
r-type variables:

Θ ::= ∅
∣∣ Θ, x : ϕx

∣∣ Θ, η : (φη, ψη).

The rules for inferring principal typing use judgments of the shape:

⊢ P : Θ; (Φ, Ψ);Ξ

where Θ is the principal basis in which P is well formed, (Φ, Ψ) is the principal
type of P , and Ξ is the set of constraints that should be satisfied. Figure 2 gives
these inference rules. A type mapping maps e-type variables to basic types, p-
type variables and r-type variables to sets of basic types. A type mapping m

satisfies a set of constraints Ξ if all constraints in m(Ξ) are satisfied.

Theorem 2 (Soundness of Type Inference) If ⊢ P : Θ; (Φ, Ψ);Ξ and m is
a type mapping which satisfies Ξ, then m(Θ) ⊢ P : (m(Φ),m(Ψ)).

Theorem 3 (Completeness of Type Inference) If ∆ ⊢ P : (P, R), then ⊢
P : Θ; (Φ, Ψ);Ξ for some Θ, (Φ, Ψ), Ξ and there is a type mapping m that
satisfies Ξ and such that ∆ ⊇ m(Θ), P = m(Φ), R = m(Ψ).

A rule is safe if the principal types of the left and the right hand are equal,
and if the variables in common have the same type. If there is a type mapping
m that satisfies that constraints, a basis induced by m is surely safe for the
rule: if also an instantiation agrees with this basis, then the application of the
rule surely not change the type of the resulting term. With this idea, it is easy

⊢ ǫ : ∅; (∅, ∅); ∅ (ǫ∗) ⊢ x : {x : (ϕx, Ψ))} : (ϕx, Ψ); {Ψ = Rϕx
} (x∗)

a : t ∈ Γ
(a∗)

⊢ a : ∅; (t, Rt); ∅
⊢ η : {η : (φη, ψη)}; (φη, ψη); ∅ (η∗)

⊢ SP : Θ; (Φ, Ψ);Ξ ⊢ SP ′ : Θ′; (Φ′

, Ψ
′);Ξ ′

(seq∗)
⊢ SP ·SP ′ : Θ ∪Θ′; (Φ, Ψ) ⊔ (Φ′

, Ψ
′);Ξ ∪ Ξ ′ ∪ {(Φ, Ψ) ⊲⊳ (Φ′

, Ψ
′)}

⊢ P : Θ; (Φ, Ψ);Ξ ⊢ P ′ : Θ′; (Φ′

, Ψ
′);Ξ ′

(parcomp∗)
⊢ P |P ′ : Θ ∪Θ′; (Φ, Ψ) ⊔ (Φ′

, Ψ
′);Ξ ∪ Ξ ′ ∪ {(Φ, Ψ) ⊲⊳ (Φ′

, Ψ
′)}

⊢ SP : Θ; (Φ, Ψ);Ξ ⊢ P : Θ′; (Φ′

, Ψ
′);Ξ ′

(loop∗)
⊢ (SP)L ⌋P : Θ ∪Θ′; (Φ, Ψ \ Φ′);Ξ ∪ Ξ ′ ∪ {(Φ, Ψ) ⊲⊳ (Φ′

, Ψ
′), Ψ ′ ⊆ Φ}

Fig. 2. Inference Rules for Principal Typing

to demonstrate that if the type mapping built from the instantiation derived
from the term satisfies the constraints described above, then a rule can be safely
applied to the term.

Theorem 4 (Applicability of ∆-safe Rules) Let

⊢ P1 : Θ; (Φ;Ψ);Ξ and ⊢ P2 : Θ′; (Φ′;Ψ ′);Ξ ′.

Then the rule P1 7→ P2 can be applied to the well typed term C[P1σ] if the type
mapping m defined by

1. m(ϕx) = t if σ(x) : t ∈ Γ ,
2. m(φη) = P

′ if ⊢ σ(η) : (P′, R′),
3. m(ψη) = R

′ if ⊢ σ(η) : (P′, R′),

satisfies Ξ ∪Ξ ′ ∪ {Φ = Φ′} ∪ {Ψ = Ψ ′} ∪ {τ = τ ′ |λ : τ ∈ Θ ∧ λ : τ ′ ∈ Θ′}.

For deciding the OK relation it is only necessary to consider the part of the
context influenced by the typing of the hole. Looking at the inference rules, we
can see that the typing of a term inside two nested looping sequences does not
influence the typing of the terms outside the outermost looping sequence. We
call core of the context that part:

Definition 7 The core of the context C (notation core(C)) is defined by:

– core(C) = C if C ≡ � |T1 or C ≡ (S1)
L ⌋ (� |T1) |T2

– core(C1[C2]) = C2 if C2 ≡ (S2)
L ⌋ ((S1)

L ⌋ (� |T1) |T2)

Since the core of a context is either the context itself or it does not influence
the typing of the context, for checking if a type (P, R) is OK for a context C
it is enough only to check if its core, assuming a typing (P, R) for the hole, is
well typed, and if the core is the context itself also if its request set is empty;
moreover there must be a term T such that the term obtained by replacing the
hole with T in the context is correct, but, since we apply a rule only to a correct

term, that condition must not be checked.

With this idea, it is easy to demonstrate that a rule can be safely applied
to a correct term if the core of the context derived from the term, assuming for
its hole the typing derived for the left hand of the rule, satisfied the constraints
described above.

Theorem 5 (Applicability of ∆-(P, R) Rules) Let

⊢ P2 : Θ; (Φ;Ψ);Ξ and ⊢ core(C)[X] : {X : (φX , ψX)}; (Φ′, Ψ ′);Ξ ′.

Then the rule P1 7→ P2 can be applied to the term C[P1σ] such that ⊢ C[P1σ] :
(P, ∅) for some P if and only if the type mapping m defined by

1. m(ϕx) = t if σ(x) : t ∈ Γ ,
2. m(φη) = P

′ if ⊢ σ(η) : (P′, R′),
3. m(ψη) = R

′ if ⊢ σ(η) : (P′, R′),

satisfies the set of constraints Ξ∪Ξ ′∪{Φ = φX , Ψ = ψX}∪{Ψ ′ = ∅ if φX or ψX occurs in Ψ ′}.

According to the core definition, let core(C) ≡ (S2)
L ⌋ ((S1)

L ⌋ (� |T1) |T2),
and ⊢ T1 : (P1, R1), ⊢ S1 : (P′

1
, R′

1
), ⊢ T2 : (P2, R2), ⊢ S2 : (P′

2
, R′

2
), then we get the

following six constraints for core(C)[X]:
• (φX , ψX) ⊲⊳ (P1, R1) • (P′

1
, R′

1
) ⊲⊳ ((φX , ψX) ⊔ (P1, R1))

• ((ψX ∪ R1) \ (φX ∪ P1)) ⊆ P
′

1
• (P′

1
, R′

1
\ (φX ∪ P1)) ⊲⊳ (P2, R2)

• (P′
2
, R′

2
) ⊲⊳ ((P′

1
, R′

1
\ (φX ∪ P1)) ⊔ (P2, R2)) • (((R′

1
\ (φX ∪ P1)) ∪ R2) \ (P′

1
∪ P2)) ⊆ P

′

2

2.2 Analysis of the rules

There are some differences between the two rules used to define the typed se-
mantic, that involve the use of rewrite rules and the inference mechanism.

First of all, the left and the right pattern of a ∆-safe rule must have the same
type, to assure that the type of a term can not be modified by applying a ∆-safe
rule. Logically it can be a right constraint, but since the type discipline checks
only local properties, the type of a term, in particular the set of presents, is not
derived from the whole term, but only from the terms outside the outermost
looping sequence. Moreover, CLS is an high level model, so it can be useful to
model creation and degradation of elements: it is not possible in ∆-safe rules.
For example, there is no basis that can make safe the simple rule a | b 7→ c.
On the contrary, there is no link between the types of the patterns in ∆-
(P, R)-rules: this allows the use of more rules than the safe condition, with
lower constraints. In particular, it is possible to construct rules of movement
of elements through membranes, very useful to model biological systems: it
is possible, for example, to apply the rules (a·b)L ⌋ (c |X) 7→ (a·b·c)L ⌋X and

(a·b)L ⌋ (c |X) 7→ c | (a·b)L ⌋X to a term.

Second, the set of constraints that must be satisfied to assure the safety
of a rule is derived once, and checked for every instantiation where the rule is

applied. In this way, there is no need of run-time derivation, but is enough to
check that the current instantiation satisfies the constraints derived once, in a
previous phase. However, the number of constraints can be very high, for rules
that involve a lot of variables.
In ∆-(P, R)-rules there is no way to decide a priori the whole set of constraints
that must be satisfied to assure that the application of a rule to a correct term
produce another correct term, but for every term where we want to apply the
rule we must take the context and derive the set of constraints, valid only for
that particular context, and difficultly reusable. However, the constraints derived
from left hand of the rules can be derived once, and the number of constraint to
derive for the context, thanks to the core idea, is limited by six.

Finally, it is possible to prove that every time the requirements for applying
a ∆-safe rule are valid, the requirements for applying a ∆-(P, R) rule are valid
too.

Theorem 6 If

P1 7→ P2 is a ∆-safe rule P1σ 6≡ ǫ σ ∈ Σ∆ C ∈ C C[P1σ] : (P′, ∅)

then there is a type (P, R) such that P1 7→ P2 is a ∆-(P, R) rule and (P, R) is OK
for C.

This theorem proves that the terms derived by only ∆-safe rules are a subset
of the terms derived by only ∆-(P, R) rules: for this reason, during inference we
can first check if the rule is ∆-safe, using constraints derived once, and only if it
is not then we check if the rule is a ∆-(P, R) rule, using run-time evaluation for
the context. We can summarize this idea in a simple algorithm:

– in an initial phase, for every rule P1 7→ P2 ∈ R, we infer ⊢ P1 : Θ; (Φ, Ψ);Ξ
and ⊢ P2 : Θ′; (Φ′, Ψ ′);Ξ ′.

– during derivation, for every rule
1. we check if the type mapping m, derived by

m(ϕx) = t if σ(x) : t ∈ Γ ,
m(φη) = P

′ if ⊢ σ(η) : (P′, R′),
m(ψη) = R

′ if ⊢ σ(η) : (P′, R′),
satisfies Ξ and Ξ ′: if not, the rule is not applicable;

2. we check if m satisfies {Φ = Φ′} ∪ {Ψ = Ψ ′} ∪ {τ = τ ′ |λ : τ ∈ Θ ∧ λ :
τ ′ ∈ Θ′}: if it is, the rule is a ∆-safe rule, and we can apply it, else we
continue;

3. we infer ⊢ core(C)[X] : {X : (φX , ψX)}; (Φ′′, Ψ ′′);Ξ ′′, and we check if m

satisfies Ξ ′′∪{Φ′ = φX , Ψ
′ = ψX}∪{Ψ ′′ = ∅ if φX or ψX occurs in Ψ ′′}:

if it is, the rule is a ∆-(P, R) rule, and we can apply it, otherwise the
correctness of the new term is not guaranteed.

Theorem 6 also implies that using the semantic in Definition 6 we derive the
same terms we can derive using a semantic with only ∆-(P, R) rules, but, using
the algorithm above, ∆-safe rules permit to reduce run-time evaluation.

References

1. Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H.
and Schug, J. (2001) Hybrid modelling and simulation of biomolecular networks.
Proc. of Hybrid Systems: Computation and Control, LNCS 2034, Springer, 19-
32.

2. Aman, B., Dezani-Ciancaglini, M., Troina, A. (2008) Type Disciplines for
Analysing Biologically Relevant Properties. Proc. of International Meeting on
Membrane Computing and Biologically Inspired Process Calculi (MeCBIC’08),
ENTCS 227, Elsevier, 97-111.

3. Dezani-Ciancaglini, M., Giannini, P. and Troina, A. (2009) A Type System for
Required/Excluded Elements in CLS. Proc. of Developments in Computational
Models (DCM’09), EPTCS, to appear.

4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P.and Troina, A. (2006) A cal-
culus of looping sequences for modelling microbiological systems. Fundamenta
Informaticae, 72, 21-35.

5. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P. and Troina, A. (2006) Bisimu-
lation congruences in the calculus of looping sequences. Proc. of International
Colloquium on Theoretical Aspects of Computing (ICTAC’06), LNCS 4281,
Springer, 93-107.

6. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., and Troina, A. (2008) Bisimu-
lations in calculi modelling membranes. Formal Aspects of Computing, 20(4-5),
351-377.

7. Cardelli, L. (2005) Brane calculi. Interactions of biological membranes. Proc. of
Comput. Methods in Systems Biology (CMSB’04), LNCS 3082, Springer, 257-
280.

8. Danos, V. and Laneve, C. (2004) Formal molecular biology. Theoretical Com-
puter Science, 325, 69-110.

9. Matsuno, H., Doi, A., Nagasaki, M. and Miyano, S. (2000) Hybrid Petri net
representation of gene regulatory network. Proc. of Pacific Symposium on Bio-
computing, World Scientific Press, 341-352.

10. Milazzo, P. (2007) Qualitative and quantitative formal modelling of biological
systems. Ph.D. Thesis, University of Pisa.

11. Pǎun, G. (2002) Membrane computing. An introduction. Springer, 2002.
12. Regev, A., Panina, E. M., Silverman, W., Cardelli, L. and Shapiro, E. (2004)

BioAmbients: an abstraction for biological compartments. Theoretical Computer
Science, 325, 141-167.

13. Regev, A. and Shapiro, E. (2002) Cells as computation. Nature, 419, 343.
14. Regev, A. and Shapiro, E. (2004) The π-calculus as an abstraction for biomolec-

ular systems. Modelling in Molecular Biology, Natural Computing Series,
Springer, 219-266.

15. Wells, J. (2002). The Essence of Principal Typings. Proc. of 29th Inter-
national Colloquium on Automata, Languages and Programming (ICALP’02),
LNCS 2380, Springer, 913-925.

