Application of Membrane Systems to Biological Processes

Claudio Zandron

Aims and Motivations

- Use the framework of P systems for defining models of specific cellular phenomena or cellular structures
 - flexibility
 - extensibility
- Design appropriate software simulators to return meaningful information to biologists
- Motivate further cooperations between the fields of P systems and Molecular Biology

Aims and Motivations

- Systems biology:
 - $\overline{}$ known biological data \rightarrow define a possible model
 - check correctness and effectiveness of the model via software simulations
 - use the model/software to predict unknown behaviours of the system
 - use the model/software to analyse dynamic properties of the system:
 - robustness
 - feedback/feedforward loops
 - periodic behaviours
 - chaotic behaviours

•

Membrane systems and biology

- Simulation of various cell processes
 - Mechanosensitive channels
 - Sodium-Potassium pump
 - Gemmation of mobile membranes

P models for mechanosensitive channels

- Mechanosensitive channels (MscL)
 - Homopentameric protein channels which open in response to membrane stretch and deformation, due to mechanical forces:
 - they are directly gated by the membrane *tension*
 - no extra-membrane component is required for the gating
 - they allow the rapid exit of different chemicals and the sudden decrease of the osmotic pressure

P models for mechanosensitive channels

Mechanosensitive channels

• Patch clamping:

- a negative pressure is applied to a portion of the cellular membrane
- description with P systems: *in vitro* model
- software simulations

• Hypotonic shocks:

- an addition of water to the external medium causes an increase in the osmotic pressure (due to different internal/external concentrations)
- description with P systems: *in vivo* model

In vitro model

In vitro P model

- Data from experiments on bacteria E. Coli
- Environment and bacterial region
- Variable parameter for membrane tension:

```
t in the set Tension = \{t_C, t_{CE}, t_{SO1}, t_{SO2}, t_{SO3}, t_{SO4}, t_O, t_L\}
(t denotes any status of the channel)
```

• Evolution rules with associated probabilities, depending on applied pressure:

$$\langle p, apply \rangle [t] \rightarrow_{prob} [t]$$

In vitro model

• Components:

- evolution rules with associated probabilities
- evolution rules depending on artificially applied pressure

$$\langle p, apply \rangle [t] \rightarrow_{prob} [t]$$

• Applicability of the model (defined for a single channel) to a population of channels

In vitro model - simulations

- Simulation results for emergent quantities (tension, current, conductance):
 - EdnaCo, a complex system simulator(by Max Garzon, University of Memphis)
 - cluster of 24 Pcs

In vitro model - simulations

In vivo model

 Description of channel activity during hypotonic shocks in natural or laboratory environments

• Components:

- environment
- bacterial region
- variable parameter for membrane tension

$$M_{\text{Env}} \left[_{t} M_{\text{Reg}} \right]$$

with M_{Env} , M_{Reg} multisets over $V_{chem} \cup \{w\}$, t in the set $Tension = \{t_{close0}, t_{close1}, t_{substate}, t_{open}, t_{lysis}\}$

In vivo model

- Components:
 - definition of concentration of objects
 - evolution rules depending on addition of water and concentration of objects

$$<$$
w^k, add> $[_t \rightarrow^{C(x,y)} [_t,$

- Analysis of subsequent activation cycles
- Soundness with different living conditions of other prokaryotes

- Establishment of the appropriate cellular concentrations of sodium and potassium ions
- Transport of 3 sodium ions outwards and 2 potassium ions inwards
- Consumption of 1 molecule of ATP:
 ATP= ADP+P
- Different conformations of the pump:
 - open inside or open outside (high/low affinity)
 - phosphorylated or not phosphorylated
 - occluded states

http://www.brookscole.com/chemistry_d/templates/student_resources/shared_resources/animations/ion_pump/ionpump.html

Post-Albers cycle with occluded states

- P model \rightarrow 8 rules
- Environment, cytoplasmic region, bilayer:

Env [Bilayer | Region

- Alphabet $V = \{Na, K, ATP, ADP, P\}$
 - alphabet for occluded states $V_{occ} = \{Na, K\}$
- Variable membrane label $L \in \{E_1 \cdot ATP, E_1^P, E_2, E_2^P\}$
 - denotes different conformations of the pump
 - labels for occluded states $L \in \{E_1^P, E_2\}$
- Evolution rules modify (also) the label of the membrane
- Threshold conditions for pump activation

• Alphabet: {Na, K, ATP, ADP, P}

• Membrane structure with bilayer:

out [| in |] out

• Initial multisets:

- inside: Naⁿ, K^m, ATP^s

- outside: Na^p, K^q

- bilayer: empty

• Multiple membrane-labelling:

$$L \in \{E_1, E_2, E_1^P, E_2^P\}$$

- Evolution rules modify (also) the label of the membrane
 - Na and K are never modified but only communicated
 - P is both an object and (part of) a membrane label

• Binding rules:

$$b_{\text{out, within}} \colon x[\mid_{L} \to [x|_{L}],$$

$$b_{\text{in, within}} \colon [\mid_{L} x \to [x|_{L}],$$

• Unbinding rules:

$$u_{\text{within, in}} \colon \left[x \right]_{L} \to \left[\right]_{L}, x$$

$$u_{\text{within, out}} \colon \left[x \right]_{L} \to x \left[\right]_{L},$$

Threshold condition for pump activation

Env [Bilayer | Reg

$$\begin{split} r_1 : [\mid_{E1} & \text{Na}^3 \xrightarrow{\text{activation condition}} \\ r_2 : [\text{Na}^3|_{E1} & \text{ATP} \rightarrow [\text{Na}^3|_{E1P} & \text{ADP} \text{ (ATP} \rightarrow \text{ADP} + P)} \\ r_3 : [\text{Na}^3|_{E1P} & \rightarrow \text{Na}^3 \text{ [}\mid_{E2P} \\ r_4 : & \text{K}^2 \text{ [}\mid_{E2P} \rightarrow [\text{K}^2|_{E2P} \\ r_5 : [\text{K}^2|_{E2P} \rightarrow [\text{K}^2|_{E2} \text{ P} \\ r_6 : [\text{K}^2|_{E2} \rightarrow [\text{}\mid_{E1} \text{K}^2 \text{]} \end{split}$$

Gemmation of mobile membranes

• Inspired by the structure and the functioning of Golgi apparatus in eukaryotic cells

P systems with mobile membranes

- Use of evolution rules of biochemical inspiration:
 - mutation, replication, splitting rules
- Predynamical rules → use of mobile membranes for the communication of strings

P systems with mobile membranes

Gemmation and fusion of mobile membranes

