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Law of Mass Action Stochastic processes

Formal representation of chemical reactions

precise

qualitative and quantitative

suitable to introduce discrete and stochastic ingredients

We begin with

Network of coupled chemical reactions

m1R1 + m2R2 + . . . + mr Rr → n1P1 + n2P2 + . . . + npPp

Definitions
1 Ri ’s: reactants;
2 Pj ’s: products;
3 mi ’s and nj ’s: stoichiometry coefficients.
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The law of mass action

The reaction rates are proportional to product of the
concentration

Collision theory justifies mass action kinetics.

Assumptions
We assume the medium is well mixed;

For the derivation of the DEs we assume a large number of
molecules in a small volume V .

In the presence of a catalyst then the law does not apply-
See later in the course.
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General Case from Chemical Reaction Notation

Assume Sj , j ∈ {1, 2, 3 . . .} a Chemical Reaction Network
(CRN) is a set of chemical reactions Ri with i ∈ {1, 2, 3 . . .}
such that:

Ri :

ns∑

j=1

αijSj →ki

ns∑

j=1

βijSj

where

αi ,j and βi ,j are non-negative integers called the
stoichiometry coefficients.

Sj on the right-hand side of the arrow are called reactants,
if the stoichiometry coefficients are non-zero ;

Sj on the right-hand side of the arrow are called products,
if the stoichiometry coefficients are non-zero ;



Law of Mass Action Stochastic processes

Stoichiometry Matrix

Given a CRN and its stoichiometry coefficients of the reactants
and the product ns and the number of the reactions nr the
entries of stoichiometry matrix Q of size ns × nr are defined as
follows:

qji = βij − αij i = 1, . . . , nr j = 1, . . . , ns

Notice the inversion of the indexes.
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Law of mass action

Let’s denote Ri(S) to be the algebraic form of the ith reaction.
We can rephrase the law of mass actions as:

Ri(S) = κi

ns∏

j=1

S
αij

j for all i = 1, . . . , nr

This simply says that the reactions rate is proportional to
product of the concentration of the reactants with higher
exponent when more than one molecule is needed.
ki is called the rate constant.
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Derivation of the DE (II)

Let’s denote S the vector of the reactants and R(S) the vector
of the ’products’.

Vector of the reactants

S =








S1

S2
...

Sn








Vector of the reactions

R(S) =








R1(S1)
R2(S2)

...
Rn(Sn)








dS
dt

= QR(S)
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Example

Chemical Species
Assume we have the following chemical
species:S = {H, O, H2O}. We enumerate them as follows:
H = 1, O = 2, H2O = 3

Chemical relations among the species

R1 : 2H + O →k1
H2O

R2 : H2O →k2
2H + O

Stoichiometry coefficients
For reaction R1 the stoichiometry coefficients of the reactants
are:

α11 = 2 α12 = 1 α13 = 0
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Example (II)

Stoichiometry coefficients
The stoichiometry coefficients of the products are:

β11 = 0 β12 = 0 β13 = 1

For reaction R2 the stoichiometry coefficients of the reactants
are:

α21 = 0 α22 = 0 α23 = 1

and the stoichiometry coefficients of the products are are:

β21 = 2 β22 = 1 β23 = 0
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Example (III)

In the previous example we have 2 reactions and 3 species this
will give a stoichiometry matrix Q size 3 × 2 The entries are
calculated as follows:

Calculation of the entries

q11 = β11 − α11 = −2
q12 = β21 − α21 = 2
q21 = β12 − α12 = −1
q22 = β22 − α22 = 1
q31 = β13 − α13 = 1
q32 = β23 − α23 = −1

The matrix

Q =





−2 2
−1 1
1 −1




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Example (IV)

The vectors are:

Vector of the reactants

S =





H
O

H2O





Vector of the reactions

R(S) =

(
k1[H]2[O]
k2[H2O]

)

d





H
O

H2O





dt
=





−2 2
−1 1
1 −1





(
k1[H]2[O]
k2[H2O]

)
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Example (V)

Finally the DEs can be rewritten as follows:

d[H]
dt = −2k1[H]2[O] + 2k2[H2O]

d[O]
dt = −k1[H]2[O] + k2[H2O]

d[H2O]
dt = k1[H]2[O] − k2[H2O]
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What kind of analysis?

Once we have derived the DEs, we have provided a
quantitative meaning to the CRN. It is possible:

Try to find an analytical solution to the set of equations
(generally very difficult).

Simulate them numerically using appropriate software
(Matlab, Mathematica, Maple). This is mostly what we are
going to be concerned here. We will be mostly mostly
using Dizzy.
http://magnet.systemsbiology.net/software/Dizzy/.

Make a steady state analysis.

Make a bifucartion analysis.

Make a sensitivity analysis: how robust is the system to
change of parameters.
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Exponential distribution

An exponential distribution models the time of occurrence of a
(simple) random event.

It is given by a random variable X , with values in [0,∞), with
density

f (t) = λe−λt ,

where λ is the rate of the exponential distribution.
The probability of the event happening within time t is

IP(X ≤ t) = F (x) = 1 − e−λt .

λ is always positive.

Mean: IE[X ] = 1
λ

Variance: VAR[X ] = 1
λ2

λ is the average density of frequency of events per unit of time.
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Graph

P.D.F and C.D.F with rate 0.2.
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Properties of the exponential distribution

Memoryless property

IP(X ≤ (s + t)|X > t) = IP(X ≤ s) for all s, t

It does not matter what happened before time t .

Closure property
X1 and X2 are independent random variables exponentially
distributed with parameters λ1, λ2 respectively.

IP(Y ≤ t) = 1 − e−(λ1+λ2)t

where Y ≡ min(X1, X2).
IP(Z ≤ t) is not exponentially distributed if Z = max(X1, X2).
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Probability of being the fastest
X1 and X2 are independent random variables exponentially
distributed with parameters λ1, λ2 respectively.

IP(X1 ≤ X2) =
λ1

λ1 + λ2

For an infinitesimally small time interval dt

IP(X ≤ dt) = 1 − e−λdt = λdt + o(h)

o(h) means a negligible term with respect to h. λ is also called
the hazard rate.
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Markov Chains

Special class of stochastic processes that satisfy the
Markov property (MP).

Given the state of the process at time t , its state at time
t + s has probability distribution which is a function of s
only. ( i.e. the future behaviour after t is independent of the
behaviour before t).

Markov Chains are very intuitive. Moreover they are yet
simple enough to facilitate effective mathematical analysis
and simulation.

Discrete Time Markov Chain have discrete time
parameters: those are not considered in the course.

We consider chains with continuous parameter (times
t ≥ 0, t ∈ IR: Markov Processes or Continuous Time
Markov Chains.
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Continuous Time Markov Chains

{X (t) : t > 0} a family of random variables and
S = {si : i = 0, 1, 2 . . .} is the state space.

Markov property

IP(X (tn) = sn|X (t1) = s1, . . . , X (tn−1) = sn−1) =
IP(X (tn) = sn|X (tn−1) = sn−1)

for each sequence t1 < t2 < . . . < tn−1 < tn

Time homogeneous CTMC

IP(X (t + τ) = sk |X (t) = si) = IP(X (τ) = sk |X (0) = si)

Conditional probability is independent of shifts of time.
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CTMC and exponential distribution

By the Markov property and time homogeneity we have:

Sojourn time
S is the amount of time spent in the state si ∈ S.

Pu = inf{S(t + u) 6= si |S(u) = si}

IP(Pu ≤ t) = 1 − e−λt

where lambda is the total rate out state si .

Summarising:
The only continuous distribution that enjoys the
memory-less property is the negative exponential.

In a CTMC all random variables are exponentially
distributed. We consider only time homogeneous CTMCs.
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Continuous Time Markov Chains

S = {s1, s2, s3}







s1 s2 s3

s1 −(λ + x) λ x
s2 ν −ν 0
s3 0 0 0







Equivalent Characterization
CTMC is fully characterised by
the state space (discrete) and the
the generator matrix Q. The
entries of Q are determined by
the parameters of the exponential
distribution.

The is a discrete set of states,
connected by transitions each
with an associated rate of an
exponential distribution.
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Continuous Time Markov Chains

What happens if we have that more than one event competing?

In this case, there is a race condition between
events: the fastest event is executed and modifies
globally the state of the system.

Mathematically

IP(X (t) = s1) = IP(Y ≤ t) = 1 − e−(λ+x)t

X1 and X2 are i. r. v. exponentially distributed with parameters
λ, x and Y ≡ min(X1, X2)

lim
dt→0

IP(X (t + dt) = s2|X (t) = s1, X (t + dt) 6= s1) =
λ

λ + x
.
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Example

Consider the system:

R1 : P →λ P2
R2 : P2 →ν P
R3 : Q →µ Q2

1 P changes at rate λ to P2

2 Q changes at rate x to Q2

Our system s1 = (1, 1, 0, 0). contains: 1 molecule of P and 1
molecule of Q and no molecule of P2, Q2.
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Example (II)

X1

X1 is the random variable associated to R1 i.e
IP(X1 ≤ t) = 1 − e−λt .

X2

X2 is the random variable associated to R2 i.e
IP(X2 ≤ t) = 1 − e−νt .

X3

X3 is the random variable associated to R3 i.e
IP(X3 ≤ t) = 1 − e−µt .

What is the random variable associate to s1 = (1, 1, 0, 0) ?
IP(Y (t) = s1) = IP(min(X1, X3) < t) = 1 − e−(λ+µ)t .
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Generator matrix

Q =







−(λ + µ) λ µ 0
λ 0 −(λ + µ) µ
0 0 −λ λ
0 0 ν −ν






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Example 2

R1 : A + B →δ C
R2 : D →ρ C

Our system s0 = (4, 5, 10, 1) contains: 4 molecules of A and 5
molecules of B and 10 molecules of C and 1 molecule of D.

The exponential random variable (r.v.) X1 with parameter δ is
associated to R1 and the exponential random variable X2 with
parameter ρ is associated to R2.



Law of Mass Action Stochastic processes

Example 2 (II)

s0

IP(Y (t) = s0) = the minimum r.v. ‘enabled in the system’

Informally R.V. ‘enabled’ s0

10 ×R2 and (5 × 4) ×R1

IP(Y (t) = s0) =
IP(min(Y1, Y2) ≤ t) = Y1 = min(X1, . . . X1

︸ ︷︷ ︸

20

), Y2 = min(X2, . . . X2
︸ ︷︷ ︸

10

)

= 1 − e−[(20δ)+(10ρ)]t
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Example 3

R1 : A + A →δ C
R2 : B →ρ C

Our system s0 = (40, 5, 1). contains: 40 molecules of A and 5
molecules of B and 1 molecule of C.

The exponential random variable (r.v.) X1 with parameter δ is
associated to R1 and the exponential random variable X2 with
parameter ρ is associated to R2.
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Example 3 (II)

s0

IP(Y (t) = s0) =???

As before the total rate for R2

5 × ρ but and (40×39
2 ) ways in which R1 occurs.

IP(Y (t) = s0) =

= 1 − e−[(780δ)+(5ρ)]t
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Chemical reaction network as stochastic process

If we can assume that biochemical systems are
deterministic, then for each reaction species we derive
rate of change -according to appropriate law.

If the system contains a small number of molecules, or for
some reasons we need to take into account noise, then we
can regard it as a CTMC.

As CTMC to each reaction of biochemical systems a rate is
associated, which can be interpreted as the number of
reactions occurring for time units (on average).

Assuming that the probability depends on the state of the
system only, then the probability of a reaction to occur is
fully determined by the number of molecules in the system
and the rate of the reaction.
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Gillespie’s Abstract physical model

Assume molecules are contained inside a volume V .

Assume molecules are spheres (easy).

We assume our molecules are distributed randomly and
uniformly throughout the containing volume V .

We assume a constant temperature: this means that the
rate of collision between two molecules does not change
as time goes by.

Reaction happens when either two molecules collide
(bimolecular) or by spontaneous reaction of one molecule.
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Deriving kinetic parameters
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What we simulate?

Given a system with S1, ....SN species with nr reactions:

R1 : α1,iSi + α1,jSj →c1

∑N
j=1 βijSj

...
Rnr : α1,kSk + α1,hSh →cnr

∑N
j=1 βijSj

with 1 ≤ i , j , k , h ≤ N and αj ,k = 1 or αj ,k = 0.

We write x for the current state of the system and νi for the
state-change vector.

How the chemical network will evolve in the time from 0 to
Tmax?
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Rate functions

To determine the global rate of reaction Rj , we need to count
how many pairs of reacting molecules we have. We do this with
the rate function or propensity function hj(x).

Reactants of different species

Rj : Sk + Si →cj � hj(x) = cjXkXi

cjXkXi is the parameter of the exponential distribution, (see
example 2 R1 in the notes).
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Rate functions

Reactants of the same species

Rj : Sj + Sj →cj � hj(x) = cj
Xj (Xj−1)

2

cj
Xj (Xj−1)

2 is the parameter of the exponential distribution, (see
Example 3 R1 in the note).

Mono-molecular reaction

Rj : Si →cj � ??

Mono-molecular reactions are simply governed by random
delay. The propensity function is:

Rj : Si →cj � hj(x) = cjXi
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The simulation according to Gillespie

The key idea for the simulation algorithm is that in a CTMC, the
time evolution of the chain is determined by two events:

1 The amount of time spent in a state;
2 The probability of choosing the next state.

That translates mathematically:
1 Calculating the density function of the amount of time

spent in a state;
2 Calculating the instantaneous probability of the next

reaction.
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Numerically simulating pj,x(τ |t)

Numerically simulating pj ,x(τ |t)

A random number generator can be used to draw random pairs
(τ, µ) whose probability density function is pj ,x(τ |t).
Given r1 and r2 randomly generated, determine τ and j such
that:

τ = (1/h0) log (1/r1)

the smallest j Σj−1
ν=1hν < r2h0 ≤ Σj

ν=1hν

The method
A general Monte Carlo technique called inversion method: x
will be randomly drawn with probability density function P(x) if
x = F−1(r) with r randomly drawn with uniform probability
density function in [0, 1] and F is the probability distribution
function (

∫ x
−∞

P(y)dy).
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The algorithm

For each i = 1, 2, ..., nr , calculate the propensity function
hi(x) .

Calculate h0(x) =
∑nr

i=1 hi(x).

Simulate time to next event,t ′ , as an px(t ′).

Simulate the next reaction index,j .

Update x = x + νj and set t = t + t ′

Record x, t and if t < Tmax , return to step 2, else stop.
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The algorithm

For each i = 1, 2, ..., nr , calculate the propensity function
hi(x) .

Calculate h0(x) =
∑nr

i=1 hi(x).

Generate two random numbers r1, r2 such that
0 ≤ r1, r2 ≤ 1 and calculate t ′, j :

t ′ =
1

h0(x)
× ln(

1
r1

)

smallest j
j

∑

i=1

hi(x) > r2h0(x)

Update x = x + νj and set t = t + t ′

Record x, t and if t < Tmax , return to step 2, else stop.
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From concentration to numbers of molecules

When we model chemical system in deterministic setting
we generally think of species as concentrations M =
moles/L. The rate of the reaction is measured in Ms−1.

In stochastic model, species as measured in number of
molecules.

How do we relate numbers and concentration?
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Rate conversion

Number of molecules
With a volume V measured in litre and [X ] is the concentration
of the amount of a species X .

number of molecules = nA[X ]V

where nA = 6.023 × 1023 Avogadro’s constant.

Order of the reaction
In a deterministic setting the rate of reactions are categorised
by order.

Ri(S) = κi

ns∏

j=1

S
αij

j

The order of the reaction is Ri =
∑s

j=1 αij where ns is the
number of species in the reaction.
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Rate conversion

Assume volume V .

First order reaction

A →k
︸ ︷︷ ︸

det

� A →c
︸ ︷︷ ︸

stoch

�

the deterministic rate law is k [A]Ms−1. Expressed in number of
molecules is becomes knA[X ]V . The hazard rate is cn where
n = nA[A]V . Assuming cnA[A]V = knA[A]V We obtain:

k = c
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Second order reaction

A + B →k
︸ ︷︷ ︸

det

� A + B →c
︸ ︷︷ ︸

stoch

�

The deterministic rate law is k [A][B]Ms−1. This means a rate as
molecules per second is k [A][B]nAV . In the stochastic model
however we have that the hazard rate is cab where a = nA[A]V
and b = nA[B]V . Thus the stochastic rate is:

c =
k

nAV



Law of Mass Action Stochastic processes

Second order reaction (dimerisation-style-reaction)

A + A →k
︸ ︷︷ ︸

det

� A + A →k
︸ ︷︷ ︸

stoch

�

the deterministic rate law is k [A]2Ms−1. This means a rate of
molecules per second, where knA[A]2V . In the stochastic
model however we have that the function rate is cn(n − 1)
where n = nA[A]V . If we assume that as n tends to be large
n(n − 1) tends to n2 we can write knA[A]2V = cn2

c =
2k

nAV
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Enzyme Catalysed reactions

How it started
People were interested in fermentation, and how a substrate
can affect the rate of the reactions. Only in 1913 with Michaelis
and Menten’s experiments fully satisfactory model was
obtained.

We shall see how the Michaelis-Menten rate is obtained we
shall move ’outside’ the law of mass action for reaction rates.
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Michaelis-Menten enzyme kinetics

The substrate S is converted to a product P only in the
presence of a catalyst E and SE is the catalyst-enzyme
compound.

Catalysts facilitate the reaction converting substrate into
product. The enzyme remain basically unchanged.

Important enzymatic reactions are phosphorylation(due to
the phophate group P04). Phosphorylation activates the
proteins, and it is deems the beginning of many signalling
pathways.

Proteins do not stay phosphorylated for ever, they revert
back to an inactive state ready to start the process again.
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Michaelis-Menten enzyme kinetics

In CRN style the reactions are the following:

Reactions

R1 : S + E →k1
SE

R2 : SE →k2
S + E

R3 : SE →k3
P + E

Assume the Law of Mass Action, we can derive the DEs.
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DEs

Stoichiometry Matrix

Q =









R1 R2 R3

S −1 1 0
E −1 1 1

SE 1 −1 −1
P 0 0 1









Vector of the reactions

R(S) =





k1[S][E ]
k2[SE ]
k3[SE ]





DEs
d[S]
dt = −k1[S][E ] + k2[SE ] (1)

d[E]
dt = (k2 + k3)[SE ] − k1[S][E ] (2)

d[SE]
dt = k1[S][E ] − (k2 + k3)[SE ] (3)
d[P]
dt = k3[SE ] (4)
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Reduction of dimension

Step 1
We observe that the equation the product P in equation (4)
does not appear in previous equations i.e. it does not influence
the behaviour of the system.

This means that the first three equations can be solved
separately.

Step 2
We observe that:

[dE ]

dt
+

d [SE ]

dt
≡ 0

We mean that the total amount of enzyme at all time t is
[E0] = [E ] + [SE ]. At time 0, [SE ] = 0 so E0 is the initial amount
of enzyme.
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New DEs
d[S]
dt = −k1[S]([E0] − [SE ]) + k2[SE ] (1′)

d[SE]
dt = k1[S]([E0] − [SE ]) − (k2 + k3)[SE ] (3′)

Problem
We do not know how to measure [SE ].

Goal

Can we express d[S]
dt and d[P]

dt without mentioning [SE ]?
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Quasi steady state approximation

Steady state assumption
If we assume that in the presence of large quantity of substrate
after a transient period the enzyme-substrate compound ‘fills
up’, then d[SE]

dt will not change any more. Then we can write:

0 = d[SE]
dt

= k1[S]([E0] − [SE ]) − (k2 + k3)[SE ]

= [S][E0] − (Km + [S])[SE ] where Km = k2+k3
k1

Thus

[SE ] =
[S][E0]

Km + [S]
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Continued

Now by substitution in d[P]
dt in (4) we have:

d [P]

dt
= k3(

[S][E0]

Km + [S]
) =

Vmax [S]

Km + [S]

where Vmax = k3[E0]. Now by substitution in d[S]
dt in (1′) we

have:

d[S]
dt = −k1[S]([E0] − [SE ]) + k2[SE ]

= k2
[S][E0]
Km+[S] − k1[S][E0] + k1[S] [S][E0]

Km+[S]
[S][E0]
Km+[S](k2 − k1(Km + [S]) + k1[S])

d[S]
dt = −k3(

[S][E0]
Km+[S])
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Michaelis-Menten Kinetics

We can reduce the reaction to

S → P

where the rate of reaction is now given by the following
equations:

d[P]
dt = Vmax [S]

Km+[S]
d[S]
dt = −Vmax [S]

Km+[S]

Vmax is the maximum velocity. and Km is the so called Michealis
constant.
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