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Towards Systems Biology

The Human Genome Project:

produced a huge amount of data about the structure of living matter;

would have been impossible without computers, algorithms and syntax to
model the structures.

Less is known about the biological function (behaviour) of cells and their
components:

the interest moved from structure to functionality

growth of a new paradigm that moves from the classical reductionist
approach to a system level understanding of life (Systems Biology,
[Hood 2000]).

Since moving from structure to functions amounts at equipping a syntax with
a semantics, Computer Science appears to be essential also for understanding
the behaviour of living organisms.
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Systems Biology

Systems Biology is a relatively new biological study field that
focuses on the systematic study of complex interactions in
biological systems, thus using a new perspective (integration
instead of reduction) to study them.

Used to obtain, integrate and analyse complex data from
multiple experimental sources (Genomics, Proteomics, etc.)
using interdisciplinary tools.

Aims at the development and application of data-analytical
and theoretical methods, mathematical modeling and
computational simulation techniques to the study of biological
systems.
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From Biology to Computer Science (and back)

Biological system -
in vivo/in vitro

experiment

Biological Results

Theoretical Model -
in silico

simulation
Simulation Results

Setting up the Model

6

Validation

?

6

Re-tuning Initial Conditions
New Functional Knowledge

?
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Computing Models Applied to Systems Biology

Lambda-calculus [Fontana & Buss, 1996];

Petri nets [Matsuno et al., 2000];

Process Calculi:

Biological π-calculus [Regev, Shapiro et al., 2001/2002];
BioAmbients [Regev et al. 2004];
Brane Calculi [Cardelli, 2005];
Beta-binders [Priami & Quaglia, 2005];
BioPEPA [Hillston et al., 2006];

Rewrite Systems:

P-Systems [Paun, 1998];
κ-calculus [Danos & Laneve, 2003];
CLS [Barbuti et al. 2005];
Stochastic Bigraphs [Krivine et al., 2007];

Statecharts [Harel et al., 2003];

Hybrid Automata [Mishra et al. 2006]; ...
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Pi -Calculus Applied to Biology

A. Regev, W. Silverman, E. Shapiro. Representation and Simulation of Biochemical Processes Using the
pi-Calculus Process Algebra. Pacific Symp. Biocomp., WSP 2001.

C. Priami, A. Regev, W. Silverman, E. Shapiro. Application of a stochastic name-passing calculus to
representation and simulation of molecular processes. Information Processing Letters, 80:25-31, 2001.

Key features of the pi-calculus applied to biology:

a molecule is a pi-calculus process;

binding is communication;

molecular recognition is name matching;

Na = a〈e〉.Na+ Na+ = a(x).Na
Cl = a(x).Cl− Cl− = a〈e〉.Cl

Na|Cl = a〈e〉.Na+|a(x).Cl− → Na+|Cl−
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Simulation Tools

There is a variety of semantically-based tools for the analysis of the
behaviour of concurrent processes, e.g. for searching the state space or
checking semantic equivalences and preorders:

Concurrency Workbench(www.dcs.ad.ac.uk/home/cwb);

Mobility Workbench
(www.it.uu.se/research/group/mobility/mwb).

Tools that explicitly manage stochastic aspects:

PEPA workbench (www.dcs.ed.ac.uk/pepa/);

TwoTowers (www.uniurb.it/bernardo/twotowers/).

Simulators implementing Gillespie’s algorithm (1977) over executions of
terms of the stochastic pi-calculus:

BioSpi (www.wisdom.weizmann.ac.il/∼biopsi/);

SPiM (www.doc.ic.ac.uk/∼anp/spim/).
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BioAmbients (1)
A. Regev, E. M. Panina, W. Silverman, L. Cardelli and E. Shapiro. BioAmbients: An Abstraction for Biological
Compartments. Theor. Comp. Sci. 325(1):141-167, 2004.

Pi-Calculus extended with capabilities for compartments.
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BioAmbients (2)
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PEP - Brane Calculus (1)

L. Cardelli. Brane Calculi. Interactions of Biological Membranes. Proc. of CMSB’04, Springer LNCS 3082, 2005.

The phago/exo/pino (PEP) calculus: Syntax

P,Q,R . . . ::= �
∣∣ P ◦ P

∣∣ !P
∣∣ σ(|P|) Systems

σ, τ, ρ, . . . ::= 0
∣∣ σ|σ

∣∣ !σ
∣∣ a.σ Branes

a, b, c , . . . ::= φn

∣∣ φ⊥n (σ)
∣∣ εn

∣∣ ε⊥n
∣∣ } (σ) Actions
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PEP - Brane Calculus (2)

The phago/exo/pino (PEP) calculus: Semantics

P
Q Q

P

P ρ P

P P

ρ

Q

Q

ε  .n 0τ|τ

ε  .n σ|σ0 exo σ|σ0

0τ|τ σ|σ0(ρ).

pino

σ|σ0

0nφ  .σ|σ

nφ  (ρ).τ|τ 0 0τ|τ

σ|σ0

phago
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P-Systems

G. Paun. Membrane Computing: An Introduction. Natural Computing Series, Springer, 2002.

P-Systems’ key features:

components are delimited by membranes;

each membrane contains a multiset of objects (DNA strands, molecules,
etc.) and a set of evolution rules (chemical reactions);

evolution rules operate on objects, by modifying them, and on the
membrane structure, by dissolving, creating or dividing membranes;

(nondeterministic) maximal parallel executions;

molecules can move from a region to another by passing through the
membranes (driven by evolution rules).

The grammatical complexity/expressivness of P-Systems has been investigated
with respect to certain restrictions: how many membranes/objects/rules are
needed to result in computational (Turing) universality?
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P-Systems: An Example
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Simulators for P-Systems

Metabolic Algorithm [Bianco, Fontana et al., 2006] gives a
deterministic simulator for P-Systems: the goal is to simulate
biological systems managing populations of objects instead of
single elements.

Dynamical Probabilistic P-System [Pescini, et al., 2006] a
stochastic simulator for P-Systems where evolution rules are
associated with a rate parameter and dynamics are driven by the
law of mass action.
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κ-Calculus

V. Danos and C. Laneve. Formal Molecular Biology. Theor. Comp. Sci. 325(1): 69-110, 2004.

A formal model (based on graph rewriting) to describe proteins
complexation and decomplexation.

The calculus is equipped with a graphical notation, and is based on
the concept of shared names to model bindings among proteins.
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κ-Calculus: Complexes
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κ-Calculus: Rewrite Rules

Two kinds of reactions deserve special attention: activations, when
connections are left untouched and only states change, and
complexations when the right hand side is connected.
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The Calculus of Looping Sequences (CLS)

We assume an alphabet E . Terms T and Sequences S of CLS are
given by the following grammar:

T ::= S
∣∣ (

S
)L c T

∣∣ T | T
S ::= ε

∣∣ a
∣∣ S · S

where a is a generic element of E , and ε is the empty sequence.

The operators are:
S · S : Sequencing(

S
)L c T : Looping and Containment (binary operator)

: S is closed, can rotate and contains T
T |T : Parallel composition (juxtaposition)
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Example of Terms

(i)

b

ca

b

ca

d e(ii)

b

ca

d e

f g

(iii)

(i)
(
a · b · c

)L c ε
(ii)

(
a · b · c

)L c (d · e)L c ε
(iii)

(
a · b · c

)L c (f · g |
(
d · e

)L c ε)
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Structural Congruence

The Structural Congruence relation ≡ is the least congruence
relations on terms satisfying the following rules:

S1 · (S2 · S3) ≡ (S1 · S2) · S3 S · ε ≡S ε · S ≡ S

T1 | T2 ≡ T2 | T1 T1 | (T2 | T3) ≡ (T1 | T2) | T3

T | ε ≡ T
(
ε
)L c ε ≡ ε(

S1 · S2

)L c T ≡
(
S2 · S1

)L c T
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Dynamics of the Calculus (1)

TV is the set of terms which may contain variables (three kinds):

term variables (X ,Y ,Z , . . .)

sequence variables (x̃ , ỹ , z̃ , . . .)

element variables (x , y , z , . . .)

Tσ is the term obtained replacing the variables in T .

A Rewrite Rule is a pair (T ,T ′), denoted T 7→ T ′, where:

T ,T ′ ∈ TV with T 6= ε

variables in T ′ are a subset of those in T

A rule T 7→ T ′ can be applied to all terms Tσ.

Example: a · x · a 7→ b · x · b
can be applied to a · c · a (producing b · c · b)

cannot be applied to a · c · c · a
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Dynamics of the Calculus (2)

The semantics of CLS is defined by resorting to the notion of
contexts.

Contexts C are given by the following grammar:

C ::= �
∣∣ C | T ∣∣ T | C

∣∣ (
S
)L c C

where T ∈ T and S ∈ S. Context � is called the empty context.

Given a finite set of rewrite rules R, the reduction semantics of
CLS is the least relation closed with respect to ≡ and satisfying
the following inference rule:

T 7→ T ′ ∈ R Tσ 6≡ ε σ ∈ Σ C ∈ C
C [Tσ]→ C [T ′σ]
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CLS and Biological Interactions (1)

Biomolecular Entity CLS Term

Elementary object Alphabet symbol
(genes, domains,
other molecules, etc...)

DNA strand Sequence of elements repr. genes

RNA strand Sequence of elements repr. transcribed genes

Protein Sequence of elements repr. domains
or single alphabet symbol

Molecular population Parallel composition of molecules

Membrane Looping sequence

Table: Guidelines for the abstraction of biomolecular entities into CLS.
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CLS and Biological Interactions (2)

Biomolecular Event Examples of CLS Rewrite Rule

State change a −→ b
x̃ · a · ỹ −→ x̃ · b · ỹ(
a · x̃

)L c X −→
(
b · x̃

)L c X
Complexation a | b −→ c

x̃ · a · ỹ | b −→ x̃ · c · ỹ
Decomplexation c −→ a | b

x̃ · c · ỹ −→ x̃ · a · ỹ | b
Catalysis c | T1 −→ c | T2

where T1 −→ T2 is the catalyzed event

Complexation
(
a · x̃ · b · ỹ

)L c X −→
(
c · x̃ · ỹ

)L c X

on membrane a |
(
b · x̃

)L c X −→
(
c · x̃

)L c X(
b · x̃

)L c (a | X ) −→
(
c · x̃

)L c X

Decomplexation
(
c · x̃

)L c X −→
(
a · b · x̃

)L c X

on membrane
(
c · x̃

)L c X −→ a |
(
b · x̃

)L c X(
c · x̃

)L c X −→
(
b · x̃

)L c (a | X )

Catalysis
(
c · x̃ · S1 · ỹ

)L c X −→
(
c · x̃ · S2 · ỹ

)L c X
on membrane where S1 −→ S2 is the catalyzed event

Table: Guidelines for the abstraction of biomolecular events into CLS.
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CLS and Biological Interactions (3)

Biomolecular Event Examples of CLS Rewrite Rule

Membrane crossing a |
(
x̃
)L c X −→

(
x̃
)L c (a | X )(

x̃
)L c (a | X ) −→ a |

(
x̃
)L c X

x̃ · a · ỹ |
(
z̃
)L c X −→

(
z̃
)L c (x̃ · a · ỹ | X )(

z̃
)L c (x̃ · a · ỹ | X ) −→ x̃ · a · ỹ |

(
z̃
)L c X

Catalyzed a |
(
b · x̃

)L c X −→
(
b · x̃

)L c (a | X )

membrane crossing
(
b · x̃

)L c (a | X ) −→ a |
(
b · x̃

)L c X

x̃ · a · ỹ |
(
b · z̃

)L c X −→
(
b · z̃

)L c (x̃ · a · ỹ | X )(
b · z̃

)L c (x̃ · a · ỹ | X ) −→ x̃ · a · ỹ |
(
b · z̃

)L c X

Membrane joining
(
x̃
)L c (a | X ) −→

(
a · x̃

)L c X(
x̃
)L c (ỹ · a · z̃ | X ) −→

(
ỹ · a · z̃ · x̃

)L c X

Catalyzed
(
b · x̃

)L c (a | X ) −→
(
a · b · x̃

)L c X

membrane joining
(
b · x̃

)L c (ỹ · a · z̃ | X ) −→
(
ỹ · a · z̃ · b · x̃

)L c X

Membrane fusion
(
x̃
)L c (X ) |

(
ỹ
)L c (Y ) −→

(
x̃ · ỹ

)L c (X | Y )

Catalyzed
(
a · x̃

)L c (X ) |
(
b · ỹ

)L c (Y ) −→
membrane fusion

(
a · x̃ · b · ỹ

)L c (X | Y )

Membrane division
(
x̃ · ỹ

)L c (X | Y ) −→
(
x̃
)L c (X ) |

(
ỹ
)L c (Y )

Catalyzed
(
a · x̃ · b · ỹ

)L c (X | Y ) −→
membrane division

(
a · x̃

)L c (X ) |
(
b · ỹ

)L c (Y )

Table: Guidelines for the abstraction of biomolecular events into CLS.
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Bisimulations

Bisimilarity is widely accepted as the finest extensional behavioural
equivalence one may impose on systems.

Two systems are bisimilar if they can perform step by step the same
interactions with the environment.

Properties of a system can be verified by assessing the bisimilarity
with a system known to enjoy them.

A system’s state space can be reduced by lumping bisimilar states.

Bisimilarities need a semantics based on labeled transition relations
capturing the potential interactions with the environment.

In process calculi, transitions are usually labeled with actions.

In CLS labels are contexts in which rules can be applied1.

1
P. Sewell: From Rewrite Rules to Bisimulation Congruences. Theoretical Computer Science 274, pp.

183-230, 2002.
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Labeled Semantics (1)

Contexts C are given by the following grammar:

C ::= �
∣∣ C | T ∣∣ T | C

∣∣ (
S
)L c C

where T ∈ T and S ∈ S. Context � is called the empty context.

Parallel Contexts CP are given by the following grammar:

CP ::= �
∣∣ CP | T ∣∣ T | CP .

where T ∈ T .

C [T ] is context application and C [C ′] is context composition.
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Labeled Semantics (2)

Given a set of rewrite rules R ⊆ <, the labeled semantics of CLS is the
labeled transition system given by the following inference rules:

(rule appl)
T 7→ T ′ ∈ R C [T ′′] ≡ Tσ T ′′ 6≡ ε σ ∈ Σ C ∈ C

T ′′
C−→ T ′σ

(cont)
T

�−→ T ′(
S
)L c T

�−→
(
S
)L c T ′

(par)
T

C−→ T ′ C ∈ CP C [ε] 6 uT ′′

T | T ′′ C−→ T ′ | T ′′

Rule (rule appl) describes the (potential) application of a rule.

T ′′ 6≡ ε in the premise implies that C cannot provide completely the
left hand side of the rewrite rule.

Example: let R = a | b 7→ c , we have a
� | b−−−→ c , but ε 6a|b−−→.
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Labeled Semantics (3)

Given a set of rewrite rules R ⊆ <, the labeled semantics of CLS is the
labeled transition system given by the following inference rules:

(rule appl)
T 7→ T ′ ∈ R C [T ′′] ≡ Tσ T ′′ 6≡ ε σ ∈ Σ C ∈ C

T ′′
C−→ T ′σ

(cont)
T

�−→ T ′(
S
)L c T

�−→
(
S
)L c T ′

(par)
T

C−→ T ′ C ∈ CP C [ε] 6 uT ′′

T | T ′′ C−→ T ′ | T ′′

Rule (cont) propagates �–labelled transitions from the inside to the
outside of a looping sequence.

Transition labeled with a non–empty context cannot be propagated.

Example: let R = a | b 7→ c , we have a
� | b−−−→ c , but

(
d
)L c a 6�|b−−→.
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Labeled Semantics (4)

Given a set of rewrite rules R ⊆ <, the labeled semantics of CLS is the
labeled transition system given by the following inference rules:

(rule appl)
T 7→ T ′ ∈ R C [T ′′] ≡ Tσ T ′′ 6≡ ε σ ∈ Σ C ∈ C

T ′′
C−→ T ′σ

(cont)
T

�−→ T ′(
S
)L c T

�−→
(
S
)L c T ′

(par)
T

C−→ T ′ C ∈ CP C [ε] 6 uT ′′

T | T ′′ C−→ T ′ | T ′′

Rule (par) propagates transitions labelled with parallel contexts in parallel
components.

C [ε] 6 uT ′′ ensures C is the least necessary.

Example: let R = a | b 7→ c , we have b
a | �−−−→ c , but b | a 6a | �−−−→ c | a.
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Bisimulations in CLS (1)

A binary relation R on terms is a strong bisimulation if, given T1,T2

such that T1RT2, the two following conditions hold:

T1
C−→ T ′1 =⇒ ∃T ′2 s.t. T2

C−→ T ′2and T ′1RT ′2

T2
C−→ T ′2 =⇒ ∃T ′1 s.t. T1

C−→ T ′1 and T ′2RT ′1.

The strong bisimilarity ∼ is the largest of such relations.

A binary relation R on terms is a weak bisimulation if, given T1,T2

such that T1RT2, the two following conditions hold:

T1
C−→ T ′1 =⇒ ∃T ′2 s.t. T2

C
=⇒ T ′2and T ′1RT ′2

T2
C−→ T ′2 =⇒ ∃T ′1 s.t. T1

C
=⇒ T ′1 and T ′2RT ′1.

The weak bisimilarity ≈ is the largest of such relations.

Theorem: Strong and weak bisimilarities are congruences.
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Bisimulations in CLS (2)

Consider the following set of rewrite rules:

R = { a | b 7→ c , d | b 7→ e , e 7→ e , c 7→ e , f 7→ a }

We have that a ∼ d , because

a
�|b−−→ c

�−→ e
�−→ e

�−→ . . .

d
�|b−−→ e

�−→ e
�−→ . . .

and f ≈ d , because

f
�−→ a

�|b−−→ c
�−→ e

�−→ e
�−→ . . .

On the other hand, f 6∼ e and f 6≈ e.

e
�−→ e

�−→ e
�−→ . . .
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A Quantitative Analysis

Chemical reactions are described by the law of mass action

the speed of a reaction is proportional to the concentrations
of the individual reactants involved

differential equations

The simulation algorithm we propose

introduces reaction speeds in the rewrite rules for CLS terms;

assumes that at each step at most one reaction may occur
(randomly chosen).
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The Law of Mass Action

Usual notation for chemical reactions:

`1S1 + . . .+ `ρSρ
k
⇀ `′1P1 + . . .+ `′γPγ

where:

Si ,Pi are molecules

`i , `
′
i are stoichiometric coefficients

k is the kinetic constant

For the law of mass action, the rate of production is:

dPi

dt
= k`′i [S1]`1 · · · [Sρ]`ρ
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Stochastic Rewrite Rules

A Stochastic Rewrite Rule is a triple (T , k ,T ′) where:

T ,T ′ ∈ TV with T 6= ε are the source and the target term,
respectively;

variables in T ′ are a subset of those in T ;

k is a rate modelling the parameter of an exponential
probability distribution representing the speed of the rule;

Example: a|b k7→ a · b
reactants a|b are linked together in the sequence a · b
k models the kinetic constant of the reaction described by the
rule
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Dynamics of the Stochastic Calculus

Enumeration of the possible occurrences of the LHS of a rule (the
higher this value, the faster the reaction).

At each step one of the rules in R is probabilistically chosen and
applied somewhere in T obtaining a new term T ′.

The duration of the reaction is chosen probabilistically according to
the exponential distribution.

Many different evolutions of a term are possible, each one with
different probabilities.

Example: R = { a|b k17→ c ,
(
x̃
)L c (X |c)

k27→
(
x̃ · c

)L c X }

T =
(
m
)L c (a|a|a|b|b)

6·k17→
(
m
)L c (a|a|c |b)

k27→
k27→

(
m · c

)L c (a|a|b) → . . .
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Stochastic Semantics for CLS

Given a finite set of rewrite rules R, the stochastic reduction
semantics of Stochastic CLS is the least relation satisfying the
following inference rule:

Ri : Ti
k7→ T ′i T ≡ C [Ti ]

T
Ri ,k·occ(Ri ,T ,C [T ′i ])
−−−−−−−−−−−−−→ C [T ′i ]

Our stochastic reduction semantics is essentially a
Continuous–time Markov Chain (CTMC).

Proposition: Let R be a set of stochastic rewrite ruled, and let R′
be the set of rewrite rules of the standard CLS obtained by

removing all rate functions. It holds: T −→ T ′ ⇐⇒ T
Ri ,r−−→ T ′.
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An Application to the Modeling of Gene Regulation

Bacteria react to changes in the environment through changes in
the enzymes they produce:

they do not synthesize degradative enzymes unless the
substrates for these enzymes are present in the environment.

E. coli does not sinthesize the enzymes that degrade lactose unless
lactose is in the environment. This phenomenon is called gene
regulation since it is obtained by controlling the transcription of
some genes into the corresponding enzymes.

We use the Stochastic CLS:

to describe the regulation process of the lactose operon in E. coli;

to use our stochastic simulator for analyzing the gene regulation process
in different situations.
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The Lactose Operon in E.coli

i p o z y a

DNA

mRNA

proteins
lac Repressor  beta-gal.  permease  transacet.

R

i p o z y a

R  RNA
Polime-
  rase

NO TRANSCRIPTION

a)

i p o z y a

R

  RNA
Polime-
  rase

TRANSCRIPTION

b)

LACTOSE
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The Stochastic CLS Model (1)

Notation:

n × T := T | . . . | T ;(
m
)L

:= membrane of the bacterium;

lacI−A := lacI · lacP · lacO · lacZ · lacY · lacA.

The initial state of the bacterium when no lactose is present in the
environment is modeled by the following term :

Ecoli ::=
(
m
)L c (lacI−A | 30× polym | 100× repr) (1)

The presence of lactose is modeled by composing Ecoli in parallel
with a number of LACT elements:

EcoliLact ::= Ecoli | 100× LACT (2)
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The Stochastic CLS Model (2)

Transcription of DNA, binding of lac Repressor to gene o, and
interaction between lactose and lac Repressor:

lacI · x̃ 0.027−→ lacI · x̃ | Irna (S1)

Irna
0.17−→ Irna | repr (S2)

polym | x̃ · lacP · ỹ 0.17−→ x̃ · PP · ỹ (S3)

x̃ · PP · ỹ 0.017−→ polym | x̃ · lacP · ỹ (S4)

x̃ · PP · lacO · ỹ 20.07−→ polym | Rna | x̃ · lacP · lacO · ỹ (S5)

Rna
0.17−→ Rna | betagal | perm | transac (S6)

repr | x̃ · lacO · ỹ 1.07−→ x̃ · RO · ỹ (S7)

x̃ · RO · ỹ 0.017−→ repr | x̃ · lacO · ỹ (S8)

repr | LACT
0.0057−→ RLACT (S9)

RLACT
0.17−→ repr | LACT (S10)
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The Stochastic CLS Model (3)

The following schemata describe the behaviour of the three
enzymes for lactose degradation:(

x̃
)L c (perm | X )

0.17−→
(
perm · x̃

)L c X (S11)

LACT |
(
perm · x̃

)L c X
0.0017−→

(
perm · x̃

)L c (LACT |X ) (S12)

betagal | LACT
0.0017−→ betagal | GLU | GAL (S13)
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The Stochastic CLS Model (4)

The following schemata describe degradation of all the proteins
and pieces of mRNA involved in the process:

perm
0.0017→ ε (S14) betagal

0.0017→ ε (S15)

transac
0.0017→ ε (S16) repr

0.0027→ ε (S17)

Irna
0.017→ ε (S18) Rna

0.017→ ε (S19)

RLACT
0.0027→ LACT (S20)
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Simulation Results - No Lactose
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Simulation Results - Lactose

A. Troina In Silico Design and Analysis of Biological Systems



Introduction
Models for the Description and Analysis of Biological Systems

The Calculus of Looping Sequences
Modeling Gene Regulation: The Lactose Operon in E.coli

Conclusions

Gene Regulation
The Stochastic CLS Model
Simulation Results

Simulation Results - Lactose
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Discussion

Among the formalisms to describe membrane systems we
mentioned Brane Calculi and P-Systems.

CLS can describe situations which cannot be easily captured by
these formalisms (which consider membranes as atomic objects).

An example of this is given by the representation of the membrane
of E. coli:

Representing the membrane as a sequence of elements allows
the definition of different functionalities depending on type
and number of elements constituting the membrane itself;

The presence and the number of lactose permease on the
bacterium membrane regulates the transportation of lactose
inside the bacterium.
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Summary

The formal modelling of biological systems allows:
1 verification of systems’ properties;
2 analysis with simulators;
3 prediction of unknown behaviour.

The Calculus of Looping Sequences can be used to describe
biological systems.

The bisimulation relations we have defined can be used:

to find equivalent reduced models;

to verify properties.

The Stochastic CLS can be used:

to model quantitative interactions;

to simulate real experiments.
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Modelling Topology: A Possible Extension

Define a “topological” extension of CLS to model cell division and
differentiation, tissues, etc. . . :

the distance between reactants alters the probability of a reaction;

cells show an inherent topological behaviour (e.g. the neurons
differentiation of retinal cells).
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