

TSCLS Simulator Demo

Miklós Espák
espakm@gmail.com

BioBITs project – TSCLS Simulator

Outline

● CLS, SCLS
● TSCLS
● SCLS Simulator
● TSCLS Simulator

● Development
● Demonstration

● Further improvements

Calculus of Looping Sequences

● Simple term rewriting system
● Terms:

● Sequence: S ::= ε │ a │ S∙S

● Term: S │ (S)L]T │ T | T

empty sequence

alphabet element

concatenation

loop
(membrane)L]content

compartmentsequence

looping sequence

Biological interpretation

a

b

c a

b

c

d e

a

b

c

d e

f g

a b c

a∙b∙c

Sequences:

Loops:

Compartments:

a∙b∙c | d∙a

a b c

d a

(a∙b∙c)L]ε

(a∙b∙c)L (a∙b∙c)L](d∙e)L (a∙b∙c)L]((d∙e)L | f∙g)

Structural congruence of terms

● Equivalence relation on sequences: ≡
S

● S
1
∙(S

2
∙S

3
) ≡

S
 (S

1
∙S

2
)∙S

3

● S∙ε ≡
S
 ε∙S ≡

S
 S

● Equivalence relation on terms: ≡
T

● S
1
 ≡

S
 S

2
 implies S

1
 ≡

T
 S

2
 and (S

1
)L]T ≡

T
 (S

2
)L]T

● T
1
 | T

2
 ≡

T
 T

2
 | T

1

● T
1
 | (T

2
 | T

3
) ≡

T
 (T

1
 | T

2
) | T

3

● T | ε ≡
T
 T

● (ε)L]ε ≡
T
 ε

● (S
1
∙S

2
)L]T ≡

T
 (S

2
∙S

1
)L]T

Term rewrite system – variables

● Variables
● Element variables

– x, y, z, ...
– can match exactly one letter

● Sequence variables
– x, y, z, ...
– can match zero or more letter (any sequence)

● Term variables
– X, Y, Z, …
– can match any term

Term rewrite system – patterns

● Patterns:
● Such “terms” that can contain variables
● Sequence patterns:

– SP ::= ε │ a │ SP ∙SP │ x │ x

● Term pattern:
– P ::= SP │ (SP)L]P │ P | P

● Instantiation (σ):
● A function that assign an element, a sequence or a term to a

variable, according to its type.
● Can be applied for a pattern, resulting a term.
● Example:

– σ(x) = a∙b, σ(X) = a | d, P = X | c∙x | d, then Pσ = a | d | c∙a∙b

Term rewrite system – patterns

● Matching:
● A pattern P matches to a term T when there is an

instantiation that produces T from P.

● Examples (alphabet: {a, b}):
● a∙x matches: a∙a, a∙b
● a∙x matches: a, a∙a, a∙b, b∙a, b∙b, a∙a∙a, a∙a∙b, ...
● a|X matches: a, a|a, b|a, a|(b)La etc., but not a∙b

Term rewriting system: rule, context

● Term rewrite rule:
● P

1
 → P

2

● P
1
 is not empty

● P
2
 must not introduce new variables

● Context:
● Specifies a certain part of a term (“hole”)
● Controls, how rules can be applied to a term
● C ::= □ │ C|T │ T|C │ (S)L]C

Applying rules on terms (1)

● Context:
● C ::= □ │ C|T │ T |C │ (S)L]C

● If the left hand side of a rule matches to a certain part of a term
within a legal context then it can be replaced to the right hand side
of the rule (with the same instantiation)

● Example 1:
● Rule: a → b | c

● Term: b | a | (c∙b)

● Matches within context:

– b | a | (c∙b)

● The “hole” of the context can be replaced to the rhs of the rule:

– b | b | c | (c∙b)

Applying rules on terms (2)

● Context:
● C ::= □ │ C|T │ T |C │ (S)L]C

● If the left hand side of a rule matches to a certain part of a
term within a legal context then it can be replaced to the right
hand side of the rule (with the same instantiation)

● Example 2:
● Rule: a → b | c
● Term: b | (a∙b)
● There are no matches. This is not a valid context. (C ::= S∙C).

– b | (a∙b)

● The rule cannot be applied.

Selecting the matches
|

a L

∙

a b

|

b a

|

a L

∙

a b

|

b a

|

a

|

a L

∙

a b b

|

a L

∙

a b

|

b a

Pattern: a | X

Term: a | (a∙b)L](b|a)

|

a L

∙

a b

|

b a

Applying rules on terms

● Example:
● Rule: a|X → b|X
● Term: a | (a∙b)L](b|a)
● The pattern (lhs) occurs in the following contexts:

– a | (a∙b)L](b | a) | ε
● X = (a∙b)L](b | a), rhs: b | (a∙b)L](b | a) result: b | (a∙b)L](b | a) | ε

– a | (a∙b)L](b | a)
● X = ε, rhs: b|ε ≡ b, result: b | (a∙b)L](b | a)

– a | (a∙b)L](b | a)
● X = b, rhs: b|b, result: a | (a∙b)L](b | b)

– a | (a∙b)L](b | a)
● X = ε, rhs: b|ε ≡ b, result: a | (a∙b)L](b)

Stochastic Calculus of
Looping Sequencs

● Rate function
● specified for every rule

● a rule application has a rate

– the rate can depend on the instantiation

● Stochastic simulation
● Input: an initial term and a set of rules

● The set of matching rules with all the possible contexts are computed.

● One rule and one context is chosen based on their rates.

● The time of the “reaction” is computed from the exit rate of the current
term.

● The selected rule is applied to the term at the selected context.

● Go to step 2.

Outline

● CLS, SCLS
● TSCLS
● SCLS Simulator
● TSCLS Simulator

● Development
● Demonstration

● Further improvements

Typed Stochastic Calculus of
Looping Sequences

● New context definition:
● C ::= □ │ T |(S)L]C

● The original (CLS) definition was:
● C ::= □ │ C|T │ T |C │ (S)L]C)

● Consequence:
● Patterns cannot match compartments partially

Selecting the matches
|

a L

∙

a b

|

b a

|

a L

∙

a b

|

b a

|

a

|

a L

∙

a b b

|

a L

∙

a b

|

b a

Pattern: a | X

Term: a | (a∙b)L](b|a)

|

a L

∙

a b

|

b a

Typed Stochastic Calculus of
Looping Sequences

● Alphabet elements are typed.

● Let Γ(a) = t
a

● If a occurs in itself, its type is t
a
.

● If a occurs in a (looping) sequence, its type is t
a
.

● The type of a sequence or looping sequence:
● the multiset of the type of its elements

● The type of a loop:
● the type its membrane (the content does not matter!)

● The type of a compartment:
● the union of the type of its children

Type of terms: example

● Γ(a) = t
1
, Γ(b) = t

2
, Γ(c) = t

1

● type(a | a | c) = { t
1
, t

1
, t

1
 }

● type(a∙b∙b∙a∙c) = { t
1
, t

2
, t

2
, t

1
, t

1
 }

● type((a∙b∙b∙a∙c)L) = { t
1
, t

2
, t

2
, t

1
, t

1
 }

● type(a | (b)L](a|b|c)) = { t
1
, t

2
 }

Rules

● Rule definition
● A list of basic and sequence types are specified for

each variable occurring in the rule
● If a match found, for each variable the number of

elements of the types relevant for the variable is
counted

● A rate function is defined that gets these numbers
as its argument

● The stochastic simulation is based on this rate

Outline

● CLS, SCLS
● TSCLS
● SCLS Simulator
● TSCLS Simulator

● Development
● Demonstration

● Further improvements

SCLS Simulator

● Guido Scatena, M.Sc. thesis, University of Pisa
● Technical details of the project

● About 10 000 lines of code
● Mostly written in F#
● The parser:

– Coco/R grammar
– Semantic actions are coded in C#

● Rate functions
– C# source code generated and compiled
– Invoked through reflection at run-time

Term representation

Node

Compartment

Element

ElementVariable

SequenceVariable

Sequence

LoopingSequence

Loop

ConstantElement
Rule

*

1

1
*

2

Some remarks

● Terms are stored in a concise and normalized
way:
● Compartments are stored as hashtables

– node * repetitions
● Looping sequences are stored in their “normal form”

– their “least” form (elements are comparable)

● But:
● There are compartments with a single child

– The content of loops is a compartment, not node
– The left and right hand side of loops is compartment

Bottom-up tree pattern matching

● Original idea published by Hoffmann and O'Donnel

● A longer preparation phase to allow faster pattern recognition

● Preparation phase
● All the subtrees of the patterns are collected
● The set of possible transitions between the subtrees are

precomputed and stored in a table

● Recognition phase
● Attributes are assigned to the leaves of the subject tree
● From the leaves to the root, a set of attributes is computed based on:

– the attributes of their children

– the precomputed transition table

● A rule can be applied if its lhs is among the attributes of the root

Non-determ. finite state automata

● The leaves the tree are sequences
● Their attributes are computed by NFAs

● An NFA is generated for every (looping) sequence
occurring in the left hand sides of the rules
(preprocessing phase)

● At the recognition phase all the automata are
started simultaneously for the input

Some drawbacks of the project

● Not well documented
● The code is not clean

● Not OO style
– Many “instance of” checks instead of late binding
– Direct field accesses (even for writing)
– Static methods accepting the instance of the same class

● Too many transformations on data
● Frequent use of temporary lists, arrays for

performing a certain computation

Outline

● CLS, SCLS
● TSCLS
● SCLS Simulator
● TSCLS Simulator

● Development
● Demonstration

● Further improvements

TSCLS Simulator

● Goals
● Correct implementation of TSCLS
● Should be more efficient then the SCLS simulator
● Java platform

Outline

● CLS, SCLS
● TSCLS
● SCLS Simulator
● TSCLS Simulator

● Development
● Demonstration

● Further improvements

TSCLS development

● Port the SCLS simulator to Java
● Port it exactly “as is”, preserving the code structure

● Adapt it to TSCLS
● Introduce a type system
● Do not accept partially matching compartments

● Create test suites
● Improve the quality of the code

● Clean up the code by refactorings
● Project management tools

● Improve the algorithm

run tests at every step

Porting the SCLS simulator to Java

● Setting up a development environment for
SCLS simulator
● Windows 7, Visual Studio 2010, ...

● Exploring the dependencies between the
subprojects:

CodeExpressionEvaluator

SCLS_Parser

SCLS_Simulator
SplashScreen

SCLS

FastRandom fsmathtools FSharp.MathTools

ObjectDumper

SCLSm

Differences between F# and Java

● Frequent use of the “option” type
● .NET specific, frequently used in F#
● In Java: any reference is can be set to null
● Each use of the option types has to be eliminated

● “Out” formal arguments
● Do not exist in Java
● Can be converted to

– a return value (if there is none)
– a “one element” array

Differences between F# and Java

● Frequent use of tuples
● Two generic class introduced:

– Pair<T1, T2>
– Triple<T1, T2, T3>

● For tuples having more elements a specific class
has been introduced.

● Tuples do not have name (neither their fields)
– It is hard to recognize their purpose
– Frequent use of tuples is a bad programming style
– Use classes instead!

Misusing tuples in F#

let crossIntantiations(pi: ((Node ref*int64*int64) * bindings list *
 (int64*int64)) array array)
 :((Node ref*int64*int64) * bindings list *(int64*int64)) array array

A two dimensional
array of triples

containing a triple,
a list and a pair.

The return value is
of the same type.

Differences between F# and Java

● Type inference vs. static type checking
● In F# variables need not to be declared (they are

inferred automatically)
● Keeps the code concise and safe
● The code is much harder to read: the role of the

variables remains hidden

● Nested tuples and type inference
● It's a real challenge to figure out what's happening!

Porting the parser

● Coco/R grammar
● Coco/R can generate Java code as well
● The grammar is written very badly

– the name of the rules does not reflect their purpose well
● rule “terms” accepts a compartment
● rule “term” accepts a term (sequence, term variable or loop)
● rule “sequences” accepts one sequence
● rule “sequence” accepts an element

– rules use many arguments
● the responsibility of rules is not clean

● Semantic actions are written in C#

Extending the grammar

● Create tests accepting the current inputs
● Extending the grammar:

● Constant elements has to be declared
● The interested types of the variables has to be

specified for the rules
● A rate function has to be specified for the rules

Example input file
types

a: ta;
b: tb;
c: tc;
d, e: te;

rules

r1 :=
a|$t:X -> b|$t:X,
<<ta, tc>>,
function (n) {

var k1 = 0.1;
var k2 = 0.5;

 return ((n[0] + 1) * k1) / (n[1] == 0 ? 1 : n[1] * k2);
}
;

term
a|a|c

Several constants
can have the
same type.

If there are more variables,
several tuples are here.

Processing the rate function

● A rate function is a valid JavaScript function
● Java Scripting API

● JSR 223, introduced in Java 6
● JavaScript Engine
● Contains many other engines, too: Python, Ruby, ...

● How it is used:
● The engine is created once
● The rate functions are compiled once
● The rate functions are invoked when calculating the rate

Project management

● Introducing Maven 2
● Supports project management through the whole

project life cycle
● Automatic dependency management
● Subprojects (called modules)
● Build the project, build the tests, run the tests, build

the project web site, deploy all the artifacts, etc.
with a single command

● Supports creating reports from the project
● Supports creating releases

Maven 2

● There are two subprojects now:
● SCLS

– The project ported in its original state
– Only clean-ups and bug fixes
– The “occ” function is not implemented

● TSCLS
– Contains the current state of the code

Logging

● System.out.println is regarded as bad
● Introducing the SLF4J framework

● Simply to use logging framework
● Used in numerous projects (e.g. Apache projects)

Coco/R → ANTLR

● The grammars have been reimplemented in
ANTLR
● The code needed a heavy clean-up
● ANTLR is one of the most successful Java projects
● Its syntax is cleaner than of Coco/R
● More fault tolerant
● Supported by Maven 2

Test grammar

● Special input file format for writing tests
● Declaration of constant elements
● Set of rules
● A set of test cases, whose elements contain:

– An initial term
– A match set, whose elements contain:

● the name of the applicable rule
● the term produced by applying the rule
● the rate of applying the rule

Example test file
types
a: ta;
b: tb;

rules
r1 := a|$t:X -> b|$t:X,
 <<ta, ~ta>>,
 function (int[] n) {
 return n[0] * 2 + n[1] * 3;
 };

r2 := a -> b,
 <>,
 function (n) {
 return 1.0;
 };

tests

a | loop(a)[a|a] | loop(a)[a|a] ->
<r1, b | loop(a)[a|a] | loop(a)[a|a], 6>,
<r1, a | loop(a)[a|b] | loop(a)[a|a], 2>;

Note that r2 does
not match to the

term.

Note that different prime
numbers are used so that we
get different rate for different

inputs.

Refactoring, clean-up

● Lines of code
● The original F# project: 5271 lines
● The first Java port (“as is”): 4412 lines

– Java is more verbose in general
● After some basic refactorings, clean-ups: 3964 lines

– Removing unused code
– Introducing constructors
– Restructuring the code
– ...

Outline

● CLS, SCLS
● TSCLS
● SCLS Simulator
● TSCLS Simulator

● Development
● Demonstration

● Further improvements

Usage

● Command line application
● The graphical user interface has not been ported.
● Arguments:

– input file
– time limit
– output file
– time sampling rate

● Produces a comma separated output
– can be processed by MS Excel / OpenOffice.org Calc
– columns: time, elements...
– rows: the time and the concentrations at the given time

Example test file
types
NH3: T_NH3;
NH4+: T_NH4+;

rules

r1 := $t:X | NH3 -> NH4+ | $t:X,
 <<T_NH3+>>,
 function (int[] n) {
 var k1 = 0.000018;
 return (n[0] + 1) * k1;
 };

r2 := $t:X | NH4+ -> NH3 | $t:X,
 <<T_NH4+>>,
 function (int[] n) {
 var k2 = 0.000000000562;
 return (n[0] + 1) * k2;
 };

term
NH3 * 1382388 | NH4+ * 1382388

A variable has
been introduced to
allow counting of

types.

The generated .csv file
time NH3 NH4+

0.0 1382388 1382388

1.0000800330978237 1383439 1381337

2.0029798446340816 1384445 1380331

3.0037158397510986 1385522 1379254

4.006293765024959 1386565 1378211

5.00702023440904 1387631 1377145

6.009312875654464 1388711 1376065

7.011813002366265 1389806 1374970

8.014032384019455 1390903 1373873

9.01756315898069 1391932 1372844

10.018269609960374 1392947 1371829

11.020591869357318 1393923 1370853

12.021228038209726 1394973 1369803

13.024962687012563 1395998 1368778

14.027320827617878 1397004 1367772

15.028808607462553 1398052 1366724

16.032100429205364 1399096 1365680

17.034856619518767 1400184 1364592

18.035164266363644 1401169 1363607

19.038119197886395 1402182 1362594

20.041308602687085 1403258 1361518

21.044711090818613 1404247 1360529

22.04653160277958 1405282 1359494

23.047493344339774 1406245 1358531

24.04888925865987 1407220 1357556

NH
3
/NH

4
+ Equilibrium

Time limit: 5000, Sampling rate: 1

9.01756315898069
610.6537049854949

1213.5187316770462
1817.5884574385184

2423.1223093872245
3030.1290786681166

3638.173577266826
4247.006179567238

4856.806524744859

0

500000

1000000

1500000

2000000

2500000

3000000

NH3/NH4+ Equilibrium

NH3
NH4+

Time

C
on

ce
nt

ra
tio

n

The same reaction using SCLS

rules

r1: (NH3, NH4+, 0.000018)
r2: (NH4+, NH3, 0.000000000562)

term
NH3 * 1382388 | NH4+ * 1382388

NH
3
/NH

4
+ Equilibrium

Time limit: 5000, Sampling rate: 1

9.695563293694281
529.7081818555762

1050.5684320701462
1572.1628691502913

2089.7487396774154
2611.2701078071545

3130.555371027145
3651.2515009780072

4176.11315042738
4696.210908284594

1100000

1150000

1200000

1250000

1300000

1350000

1400000

1450000

1500000

1550000

NH3/NH4+ Equilibrium

NH3
NH4+

Time

C
on

ce
nt

ra
tio

n

Outline

● CLS, SCLS
● TSCLS
● SCLS Simulator
● TSCLS Simulator

● Development
● Demonstration

● Further improvements

Further improvements

● Speed
● The implementation is still slow. :-(
● The type of the terms is recomputed every time

– It should be stored in the attributes of the nodes!
● The structural dependencies of the subterms is not

used
– Dependency graph should be created

● The structural dependencies of (looping) sequences
 is not used. (Independent NFAs run parallelly)
– Multiple pattern matching algorithm should be used.

Further improvements

● Exploring the bottlenecks of the implementation
● JProfiler

● Improving code quality
● Eclipse Metrics
● CheckStyle
● PMD
● FindBugs

Thank you for the attention!

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34
	Dia 35
	Dia 36
	Dia 37
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42
	Dia 43
	Dia 44
	Dia 45
	Dia 46
	Dia 47
	Dia 48
	Dia 49
	Dia 50
	Dia 51
	Dia 52
	Dia 53
	Dia 54
	Dia 55
	Dia 56
	Dia 57
	Dia 58

