
1

CONTRIBUTIONS IN

COMPUTATIONAL SYSTEMS BIOLOGY

Eva Sciacca

sciacca@dmi.unict.it

Ph.D. Student at University of Catania

1

ABOUTME

I belong to the PhD Program in Mathematics for 

Technology (Coordinator Prof. Giovanni Russo) at 

the University of Catania, and my work is 

supervised by:

� Prof. Giuseppe Nicosia;

I spent 16 months at the Department of 

Mechanical Engineering and Biological 

Engineering at the Massachusetts Institute of 

Technology (MIT) in Boston U.S.A. and I was 

supervised by: 

� Prof. C. Forbes Dewey Jr.
2



2

SUMMARY

� Intro: Modeling Biological Systems with ODE

� Robust Parameter Identification for Biological 

Circuit Calibration; [Nicosia]

� Implementation of A Web Based Tool for 

Integration of Molecular Pathway Models 

(CytoSolve); [MIT] 

� Reliable Biological Circuit Design Including 

Uncertain Kinetic Parameters
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MODELING
Biology is understood and is translated into graphs, equations, 

reactions.

4

http://www.celldesigner.org/
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MAIN INGREDIENTS

Objects: molecules (cytokines/chemokines/...), 

cells (Macrophages, Neutrophils, ...),

organs (lymph node, spleen, .., lung,.. ) 

Actions:  trafficking/migration, 

interaction (activation/inhibition), 

proliferation 

Ordinary Differential Equations are about rate of 

change of quantities 
5

ORDINARY DIFFERENTIAL EQUATIONS

(ODE)

a – some quantity examples: cell count, receptor expression level, cell 

damage, ...

We write ODE as 

da/dt = f where f may be a complex formula 

We interpret this ODE as 

da = f dt

- the change in a during a short time interval dt is equal to 

f times dt

f may depend on time or may depend on a or both.  

6
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BASIC EXAMPLES

Kinetics – how fast does a reaction proceed?

1. da/dt = 0  

- This means da = 0 * dt = 0   � change in a is 0, � a does not 
change

2. da/dt = 1

- This means     da = dt  � a changes by dt

3. da/dt = - a da = - a * dt � a changes by – a * dt

- This means that a decreases, and the reduction is large when 
a is large and getting small when a is getting smaller. 
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MODELING REACTIONS

- THE LAW OFMASS ACTION

The rate of change of products is proportional to the product 
of reactants concentration

A � 0

The only reagent (left side) is a :  

� rate of change is proportional to a, 

ODE da/dt = -k*a      (minus sign since we loose a)

A � B :  

Similar to the previous case but here one B is created per 
each A that disappear

ODE 

da/dt = -k*a    as before but we also have 

db/dt = k*a;      here the sign is +

8
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A          B

rate = -
∆[A]

∆t

rate = 
∆[B]

∆t

time
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MODELING REACTIONS – CONT.

A + B � C; 

Here the reactants (left side) is A and B, the product (right 

side) is C. 

dc/dt = k *a*b;    C is created at a rate proportional to the 

product of the concentration of A and B 

da/dt = - k*a*b;   The rate of change of A is the same as the 

rate of change of C – per each C that is created one A is lost

db/dt = - k*a*b, similar to A.
10
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BASIC PROBLEM OF ENZYME KINETICS

11

Suppose an enzyme were to react with a substrate, giving a product.

S + E P + E

If we simply applied the law of mass action 
to this reaction, the rate of reaction would 
be a linearly increasing function of [S]. As 
[S] gets very big, so would the reaction rate.

This doesn’t happen. In 
reality, the reaction rate 
saturates.

MICHAELIS ANDMENTEN

In 1913, Michaelis and Menten proposed the following mechanism 
for a saturating reaction rate

S + E 
k1

k-1

ES k2 P + E

Complex. 
product

12
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Michaelis-Menten Kinetics

� When [S] << KM, the 
reaction increases linearly with 
[S]; I.e. vo = (Vmax / KM ) [S]

Very little [ES] is formed 

� When [S] = KM, vo = Vmax /2 
(half maximal velocity); this is a 
definition of KM: the 
concentration of substrate which 
gives ½ of Vmax. This means that 
low values of KM imply the 
enzyme achieves maximal 
catalytic efficiency at low [S].

� When [S] >> Km, vo = Vmax

13
Where activity measurements should be performed: 1. [S] very high

2. all enzyme bound in [ES] complex

MICHAELIS-MENTEN KINETICS

When the enzyme is saturated with substrate, the reaction is 
progressing at its maximal velocity, Vmax.

Combing the steady-state assumption (d[ES]/dt=0) with the 
conservation condition ([E]T=[E] + [ES]) vo leads to the Michaelis-
Menten Equation of enzyme kinetics:

where Km is

KM= (k-1 + k2)/k1[ ]
[ ]S

Smax

+
=

MK

V
v

14
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MICHAELIS-MENTEN KINETICS

15

What is Vmax and KM ?

� KM gives an idea of the range of [S] at which a reaction will 
occur.  The larger the KM, the WEAKER the binding affinity of 
enzyme for substrate.

� Vmax gives an idea of how fast the reaction can occur under 
ideal circumstances.

ANALOGIES BETWEEN BIOLOGICAL NETWORKS AND

ELECTRONIC CIRCUITS

Biological Domain Electrical Domain

mass charge

Mass flux current

concentration voltage

stoichiometric

conservation 

Kirchhoffs voltage law

mass conservation Kirchhoffs current law

16
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ROBUST PARAMETER

IDENTIFICATION FOR BIOLOGICAL

CIRCUIT CALIBRATION
17

OUTLINE

�Motivation

� Problem Definition

� Tested Algorithms

� Case study: P53/MDM2 model

� Results

� Conclusions

18
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MOTIVATION

� Accurately modeling and simulating biological networks is

a challenging problem, due to the complex interaction

between large numbers of interacting pathways, feedback

inherent to the system, and the stochastic nature of

biological processes.

� The aim of this work is to give a computational tool to

analyze the robustness (less sensitive to the noise of the

experimental data) of the parameters of multivariate,

multi-scale, hybrid biological networks.

� We have tested classical methods such as LSQNONLIN of

MATLAB, DIRECT, and a Pattern Search Algorithm and

two evolutionary algorithms: Covariance Matrix

Adaptation Evolution Strategy and Differential Evolution.

19

PROBLEM DEFINITION: PARAMETER

IDENTIFICATION
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OPTIMIZATION PROBLEM
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OPTIMIZATION PROBLEM

Optimization
Algorithm

(fitting simulated data 
with “Measured” data)
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Monte Carlo Simulation
adding error to the 
“Measured” Data

Ranges of Estimated Parameters

Analyze Algorithms that find Smaller ranges of the estimated parametersGOAL

ROBUST OPTIMIZATION

23

TESTED ALGORITHMS
� LSQNonLin

The function LSQNONLIN of Matlab with the default options of
large scale optimization, which uses the subspace trust method
based on the Levenberg-Marquardt method to compute the
decreasing directions.

� Direct
Global search method that applies to Lipschitz continuous function
and, after an initial implicit estimate of the Lipschitz constant
chooses the potentially optimal rectangles and resamples them
across their axis. Subsequently it divides these rectangles and
proceed sampling and dividing until a stopping criteria is met.

� GPS
Pattern Search algorithm known as Search and Poll algorithms. In
the search step, any finite set of mesh points can be evaluated.
When the search step fails the algorithm calls the poll procedure
that consists in evaluating the objective function at the
neighboring mesh points to see if a lower function value can be
found.

24
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TESTED ALGORITHMS

� CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is 
an evolutionary algorithm for difficult non-linear non-convex 
optimization problems in continuous domain. The CMA-ES is a 
second order approach and estimates a covariance matrix within 
an iterative procedure. Adaptation of the covariance matrix 
amounts is similar to the approximation of the inverse Hessian 
matrix. Restarts with increasing population size improve the 
global search performance.

� DE 

Differential Evolution (DE) was introduced by Storn and Price. DE 
works as follow: after a random initialization, the objective 
function is evaluated and the following steps are repeated until a 
termination condition is satisfied. The crucial idea behind DE is 
this new scheme for generating trial parameter vectors. DE 
generates new parameter vectors by adding the weighted 
difference vector between two population members to a third 
member. We used the classical version of DE DE/rand/1.

25

TEST-CASE: P53-MDM2 MODEL
� The negative feedback loop between the tumor suppressor
p53 and the oncogene Mdm2 is one of the best-studied
protein circuits in human cells.

� In the p53 system, p53 transcriptionally activates Mdm2.
Mdm2, in turn, negatively regulates p53 by both inhibiting
its activity as a transcription factor and by enhancing its
degradation rate.

� For different parameters of the feedback loop, the dynamics
can show either a monotonic response, damped oscillations,
or undamped (sustained) oscillations in which each peak
has the same amplitude as the previous peak. The stronger
the interactions between the proteins, the more oscillatory
the dynamics. Other parameters, such as high basal
degradation rates of the proteins, tend to damp out the
oscillations.

N. Geva-Zatorsky, N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal, E. Dekel, T. Yarnitzky, Y. 

Liron, P. Polak, G. Lahav and U. Alon. Oscillations and variability in the p53 system, 

Molecular Systems Biology (2006) 
26
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TEST CASE ParametersParametersParametersParameters Nominal Nominal Nominal Nominal 
ValueValueValueValue

kf1kf1kf1kf1 0.9

V1 4

Kp1 2

kdp1kdp1kdp1kdp1 1

kd1kd1kd1kd1 8.5

Kdeg1 0.1

kd2 0.85

Kdeg2 0.01

kf2 1.1

kf3 0.8

V2V2V2V2 0.8

Kp2 0.2

kdp2kdp2kdp2kdp2 0.4

kd3 0.08

kd4 0.8

27

COMPUTATIONAL TOOL

1. Perform a first global search on the complete
parameter set.

� We used LSQNonlin algorithm which requires less
computational effort in terms of CPU time and number of
function evaluations but using a multi-start strategy
using the method repeatedly, starting from a number of
different initial points to avoid to stuck in a local
minimum.

2. After defining the value of the whole parameters of
the set, identify the parameters which are more
critical for matching the known experimental data.

� E.g. through Latin Hypercube sampling and calculation of
correlation coefficients.

3. Perform the robustness of that parameters throw
Montecarlo simulation adding noise to measured
data.

� Results demonstrated that DE identified the most robust
set of parameters and was the most effective in terms of
the data fitting.

28
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RESULTS

29

Algorithms/Algorithms/Algorithms/Algorithms/

ParametersParametersParametersParameters
Kf1Kf1Kf1Kf1 Kdp1Kdp1Kdp1Kdp1 Kd1Kd1Kd1Kd1 V2V2V2V2 Kdp2Kdp2Kdp2Kdp2

DirectDirectDirectDirect 0.93 0.015 1.08 0.054 8.56 0.25 0.81 0.072 0.46 0.148

LSQLSQLSQLSQ 0.67 0.251 1.34 0.471 6.46 2.11 0.73 0.159 0.54 0.181

GPSGPSGPSGPS 0.86 0.142 1.06 0.11 8.04 0.965 0.87 0.124 0.55 0.178

CMACMACMACMA----ESESESES 0.88 0.061 1.04 0.15 8.18 0.86 0.82 0.122 0.5 0.198

DEDEDEDE 0.9 0.9 0.9 0.9 0.0190.0190.0190.019 1 1 1 1 0.010.010.010.01 8.52 8.52 8.52 8.52 0.250.250.250.25 0.8 0.8 0.8 0.8 0.0310.0310.0310.031 0.41 0.41 0.41 0.41 0.0740.0740.0740.074

Results: µ(P) and σ(P)

30
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CONCLUSIONS

� We presented a methodology inspired by the electronic
circuit design to study the most robust optimization
algorithms (less sensitive to the noise of the experimental
data) for parameter identification that are critical for
matching the known experimental data.

� Considering the complete problem of identification of the
whole set of parameters LSQnonLin showed the best
results in terms of reached object function value and the
number of function evaluations even if it is more dependent
to the chosen initial search point.

� Using a Montecarlo simulation, the evolutionary strategy
DE and the deterministic method Direct are the most
robust in the sense that they are less sensitive to the noise
of the experimental data. Both Direct and DE showed 100%
of success in the identification of the parameters that
characterize the curves of the variation of the
concentrations over the time accurately with respect to the
experimental data.

32

QUESTIONS?

33
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A WEB BASED TOOL FOR

INTEGRATION OF MOLECULAR

PATHWAY MODELS
34

OUTLINE

�Motivation

� CytoSolve

� Remote Local Solver

� Controller

� Tools

� CytoSolve Web Portal

� Use Case

� Test Case: EGFR Model

� Conclusions and Future Works

35
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MOTIVATION

� A grand challenge of Systems Biology is to model the

whole cell by capturing the quantitative kinetics of

interactions between organelles at the molecular

mechanistic level to derive descriptions of higher level

cellular functions.

�Modeling a cell or a cellular function requires a 

computational architecture that integrates multiple 

biological pathway models in a scalable way, ensuring 

minimal effort to maintain the resulting integrated 

model. Distributed control allows the maintenance of 

each model at the local level, not at a central level.
36

GOALS

The goal of this work was to

develop a Web Application

in order to allow users to

simulate models of

biochemical reaction

networks as a distributed

ensemble of biological

pathway models and

integrate computed

solutions by building a web

GUI to CytoSolve*.

*Ayyadurai, V.A.S., Dewey, C.F., Jr. (2008) Cytosolve: Scalable method for dynamic 
integration of a distributed ensemble of biological pathway models, BMC Bioinformatics, in 
review

The computational architecture used by Cytosolve is based on the dynamic 

messaging approach. The dynamic messaging approach implies that the 

models remain independently executing programs that interact only by 

exchanging data via message passing during execution.
37
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CYTOSOLVE: LOCAL SOLVER

� The CytoSolve Local Solver is designed for remote
SBML model simulations. It can support multiple
models on multiple computers distributed across the
web.

� The Local Solver can be instructed by a central
controller:

� To simulate a local model over a single time step.
After simulation, the service sends back new
concentration values calculated by the model.

� To insert new species concentration values into the
model simulation based on the combined results of
many models.

� These two instructions allow external control of the
global simulation.

38

CYTOSOLVE LOCAL SOLVER: GUI

39
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CYTOSOLVE: CONTROLLER

A centralized Controller couples multiple SBML models

together, sending instructions to the Local Solver.

The Controller of Cytosolve consists of three main

components:

� the Monitor serves to track the progress of each pathway’s

solution time;

� the Communications Manager mediates communication

across all pathway models;

� the Mass Balance algorithm provides computational

steering by ensuring mass conservation across all integrated

models for each time step.

40

MASS BALANCE ALGORITHM

The Mass Balance serves to provide the calculation 

of species concentration for each time step n

across the ensemble of m models. Each model i

was treated as a black box with the input and 

output

The jth species concentration of the integrated

model in the global vector is calculated as:
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TOOLS

� CytoSolve Local Solver

� Interface: Java

� SBML ODE Solver*: C based on CVODE** library 

� CytoSolve Web Application

� CytoSolve Controller: Java

� Web Application Framework: Java Server 

Pages

� Integrated Development Environment: Java 

Studio Creator/ NetBeans

� Application Server: GlassFish

*Machn´e,R., Finney,A., Muller,S., Lu, J., Widder, S. and Flamm,C. (2006) The SBML ODE Solver Library: a 
native API for symbolic and fast numerical analysis of reaction networks. Bioinformatics 22(11),1406-1407
**Scott D. Cohen, Alan, C. Hindmarsh CVODE, a stiff/nonstiff ODE solver (1996) Computers in Physics

42

CYTOSOLVE: PREVIOUS ARCHITECTURE

43
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CYTOSOLVE: CURRENT ARCHITECTURE

44

CYTOSOLVEWEB PORTAL

1.Simulate a single model on the local machine;

2.Simulate a single model on a remotemachine;

3.Simulate an ensemble of models remotely

integrating their simulation on the remote

nodes machines on the network;

4.Simulate a model locally integrating this

simulation with the other remote nodes

machines on the network.

45
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46

HOME PAGE: HTTP://CYTOSOLVE.MIT.EDU

47
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TEST CASE: EGFR MODEL*

*Kholodenko, B.N., Demin, O.V., Moehren, G. and Hoek, J.B. (1999) Quantification of short term signaling by 

the epidermal growth factor receptor, J Biol Chem

23 Species
25 Reactions

48

REMOTE SIMULATION

49
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TEST CASE: EGFR - 4 MODELS

Shc Production Pathway

EGFR Dimerization Pathway PLCg Production Pathway

SOS Production Pathway
50

INTEGRATINGMULTIPLE SIMULATIONS

51



26

RESULTS

[EGF_EGFR](t)

err = 0.0176
err = 0.0090

Time

52

CONCLUSIONS

� Ease of access: The architecture is able to integrate new

pathway models.

� The multiple platform availability for the simulations: The

computational system allows models developed on different

hardware and computing environments to be integrated.

� Open accessibility: The computational system supports

integration of models across geographical boundaries. The

architecture and the implementation of the web application

support communication with models anywhere without regard to

geographical location.

� Ensures protection of proprietary models (models where the 

source code is inaccessible). The black-box simulations of the 

models allow researchers to integrate Public models with existing 

Proprietary models to learn some new aspect of science, without 

violating confidentiality issues.
53
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FUTUREWORKS

� Employ Ontologies to manage semantics and species
identification across all individual biological pathway
models

� Unique Identifiers for uniquely name biological resources.
E.g. LSID Life Science Identifiers.

� Analyzing the size of the time step.

� Adaptive time stepping at the Controller level to observe
the time scales of different models and invoke them only
when necessary.

� Testing with N other models. (N ~ 103?)

� Support CellML and other descriptions.

54

QUESTIONS?
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RELIABLE BIOLOGICAL CIRCUIT
DESIGN INCLUDING UNCERTAIN

KINETIC PARAMETERS
56

MOTIVATION

Generally, the design frameworks that support 

Research & Development technologies must face 

with uncertainty modeling. In biological field the 

uncertainty arise from different sources related 

to:

� behavioral models, that connect uncertain model 

parameters to observed evolution of system state;

� equivalent models, that connect uncertain model 

parameters to system feedbacks;

� approximated models, that approximate various 

aspects of a system in a computational tractable 

manner. 57
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INTRODUCTION

� The biological systems is investigated in terms of performances or 

specifications of the system. 

� The analysis of the biological system is based on the idea that the 

set of parameters involved in the model can be classified into two 

different typologies: the uncertain kinetic parameters and the 

control design parameters. 

� To take into account the uncertainties arising from the 

estimations of the kinetic parameters, the function representing 

the feedback of the system is fuzzified and a measure of failure of 

the designed biological circuit is minimized to reach the required 

performance.

� The methodology set up the design parameter values to balance 

the uncertainty of the kinetic parameters. 

58

FUZZY SETS

� Fuzzy sets have been 

introduced by [Zadeh, 

1965] as an extension of 

the classical notion of set. 

In classical set theory, 

the membership of 

elements in a set is 

assessed in binary terms. 

Fuzzy set theory permits 

the gradual assessment 

(in the real unit set [0;1]) 

of the membership of 

elements
59
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FUZZY NUMBER

� A fuzzy number is a convex, normalized fuzzy set.

α
-

le
v
e

l

60

PARAMETERS

� Uncertain kinetic parameters KU, that are 

known in terms of confidence intervals. Those 

parameters are for example the Michaelis 

constants or the constant rates for the kinases 

and the phosphatases.

� Control design parameters KCD, that can be 

defined in a reliable way and determine the 

behavior of the biological system. Those are for 

example the maximum rate of degradation of an 

enzyme or the first order transportation rate 

parameters.

61
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PERFORMANCES

62

Goldbeter, A. (1996) Biochemical Oscillations and Cellular Rhythms, Cambridge University Press, Cambridge.

PERFORMANCES

Performances can be defined in functional terms

as:

The uncertainty concerning the uncertain kinetic

parameters compel to consider these parameters

as fuzzy numbers and to interpret the previous

formulation as:

Which is the fuzzy representation of the

performances and only the controllable

parameters are considered crisp.

),,( UCD KKyP =

)
~

,(~~
UCD KKyP =

63
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APPROXIMATION

� Designing for uncertainty is computationally 

expensive.

� Approximation methods reduce the high 

computational cost associated with designing for 

uncertainty by using approximations.

� Linearization:

� Response Surface:
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FUZZYFICATION

� The fuzzy representation of the performance is 

constructed enveloping the fitted data by 

intervals. 

� The fuzzy map is built by α-level considering the 

minimum median interval which envelopes a 

fraction (1- α) of the performance values.

65
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POSSIBILITY MEASURE OF FAILURE

In order to deal with design
specifications it is necessary
to compare the fuzzy numbers
representing the
performances with crisp
numbers representing the
design constraints and give a
measure of satisfaction of
these constraints.

For this purpose the possibility
measure of failure with
respect to the specification
constraints can give useful
information to improve the
design.
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The possibility measure of failure P

with respect to the specification

constraints Pf (P ≥ Pf):

66
Dubois, D. and Prade, H. (1988) Possibility theory: An approach to computerized processing of uncertainty. New York: Plenum 
Press.

POSSIBILISTICWORST CASE DISTANCE

� In order to model the uncertainties arising from
the circuit simulation of the performance, the
fuzzy set theory has been used.

� A response surface of the biological circuit
performances as function of kinetic parameters
has been fitted as suitable approximation in a
finite range.

� By means of the approximation the performances
were fuzzyfied and it was computed the possibility
measures of performances failure

� The function to optimize was the sum of
possibilities measure of the performances failure.
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Biological System
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Worst Case

Distance

Control Design
Parameters kCD
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DROSOPHILA PERIOD PROTEIN 

CASE STUDY

69

Goldbeter, A. (1995) A model for circadian oscillations in the Drosophila period protein (PER) Proc. R. Soc. Lond. B, 261 , pp. 319-
324.
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PERFORMANCES

In this case study, the target performances of the required 

design problem are:

� the period (measured in hours), and

� the amplitude (measured in µmol)

of the concentration of the total quantity of the PER protein 

(PT) which is given by:

PT = P0+P1+P2+PN

These performances are optimized by the methodology and 

they are expressed in terms of possibility of failure. In this 

particular test case, the minimum threshold for the period 

of the PER protein oscillations is fixed to 24 hours while 

the minimum threshold of the amplitude is fixed to a 

rather large value in order to guarantee significant 

oscillations.
70

RESULTS: PERIOD

71
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RESULTS: AMPLITUDE

72

COMPARISON BETWEEN STANDARD

DESIGNMETHODOLOGY AND PWCD

�We made the comparison between Possibilistic
Worst-Case Distance methodology and the most
common design methodology named “Nominal
Over-Design”.

� The Nominal Over-Design methodology sets
every objective to a secure value with respect to
the nominal specifications. In this test case the
objectives were increased of a 10% with regard to
the minimum thresholds.

73
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COMPARISON

74

QUESTIONS?

75
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