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Experimental Evidences of Noise in Biology

Many experimental evidences of stochasticity in living systems:
transcription and translation [Abkowitz, 1996; Ozbudak, 2002], mRNA production is quantal [Hume, 2000]

and in random pulses [Ross, 1994; Walters, 1995], the protein production occurs in short bursts and at

random time intervals [Yarchuk, 1992; Chapon, 1982], in the λ phage the same starting conditions lead the

system to two different kinds of evolutions (lysis/lysogeny) [Oppenheim,2005 (review)]...

2 kinds of cellular noise:

intrinsic noise - due to the inherent nature of the biochemical
interactions
extrinsic noise - due to the external environmental conditions

Biological systems can be extremely non-linear and often
exhibit many steady states, bifurcations or chaotic behavior

Stochastic simulation is the probe to access the different
evolutions
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Experimental Evidences of Noise in Biology
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Deterministic Vs Stochastic Approaches

The deterministic approach - Ordinary Differential Equations:

dx1

dt
= f1(x1, . . . , xn)

...
dxn

dt
= fn(x1, . . . , xn)

molecular and environmental interactions are described by
means of an equation for each molecular species xi

it requires the simultaneous solving of all the equations

it captures the ensemble features of the system (global)
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Deterministic Vs Stochastic Approaches

The stochastic approach:

molecular interactions are described by means of probability
distributions

the probability distributions are dynamic. They evolve
according to the system state

it exploits a scattering perspective of chemical reactions

it captures individuals behavior of the molecules (local)
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Deterministic Vs Stochastic Approaches

Statistical physics argumentation shows that the stochastic
approach:

is always valid when deterministic is

may be valid when ordinary deterministic is not, i.e. in a
nonlinear system in the neighborhood of a chemical instability

fully accounts for inherent statistical correlations and
fluctuations neglected by the deterministic

never approximates infinitesimal time increments by dt but
uses finite time steps ∆t

Stochastic approach requires HUGE computational time for big
number of molecules!

⇒ It is not the definitive solution but an appropriate tool under
“certain” conditions.
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SSA

Stochastic Simulation Algorithm (SSA - Gillespie ’76)
General Problem:

V = fixed volume (well stirred, fixed experimental conditions)

{Si}i=1,...,N = set of N chemical species in V

{Xi}i=1,...,N = current number of molecules in V

{Rµ}µ=1,...,M = set of M chemical reactions

{cµ}µ=1,...,M = set of M reactions parameters

How does it evolve?

Fundamental Hypothesis:

cµδt =
average probability that a particular combination of Rµ
reactant molecules will react accordingly in the next time
interval δt.
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SSA

How does it work?
∀ dynamical step the algorithm answers 2 questions:

when the next reaction will occur? τ
which one the next reaction will be? µ

this is done exploiting the Fundamental Hypothesis to get

P(τ, µ)δτ =

probability that the next reaction in V will occur
in the differential time interval (t + τ, t + τ + dτ)
and will be Rµ

P(µ, τ) ∝ aµ = cµhµ propensity function

cµ summarizes chemical and physical properties

hµ =
N∏

i
1

(
Xi

αi

)
combinatorics

a0 =
M∑

µ
1

aµ normalization
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SSA: The Algorithm

for each step of the dynamics:

compute the probability distribution

toss r1
10

R3R1 R4

a1 a2 a3

?
?

?
?

R2

toss r2 and compute τ =
1

a0
ln

1

r2

then apply the tossed rule to modify the number of molecules
involved by that rule

then update the evolution time t + = τ
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τ Leaping

Tau leaping (Gillespie ’06)

Method used to speed up stochastic simulations firing more
than one reaction per step.

Idea: given a time increment τ find the exact probability
distribution of rules application.
! as hard to solve as the CME !

Solution: Approximate the exact behavior

To obtain a good approximation, the changes in propensity
functions are bounded =⇒ Leap Condition

τ small enough s.t. ∆aµ � ε in [t, t + τ)

Toss the reactions sampling a Poissonian distribution P(aµ, τ)
with mean and variance aµτ .

D.T. Gillespie et al., Journ. Phys. Chem., 124:044109 (2006)
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τ Leaping

The accuracy of the τ Leaping

Consecutive reactions system:
A

c1→ B
B

c2→ C

Test case to check the tau leaping method:
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Membrane systems

P systems (G.Paun, 1998): calculus model inspired by the cell

nondeterministic maximally parallel discrete models for cellular
process

essential features of a cell captured by a P system:

cellular structure

biochemical substances

chemical reactions

communication / transport
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Cellular Structure
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τ -DPP

Quantitative (stochastic) simulation of complex systems

Features

The P system framework is used to describe the system

Chemical reactions as rewriting rules

A modified tau-leaping procedure, placed inside every volume,
is used to describe the behaviour of the system

Problems

Complexity of the algorithm: O(MN)

The molecules are uniformly distributed inside the volumes
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τ -DPP: How it works

The iterative macrosteps of the algorithm are:
1 Compute the probabilities of the rules

2 Compute a candidate time increment

3 Select the smallest time increment among volumes

4 Select the set of reactions to execute

5 Update the system

P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, Tau leaping stochastic simulation method in P Systems,
Membrane Computing, 7th International Workshop, WMC 2006,(H.J.Hoogeboom, G. Paun, G. Rozenberg, A.
Salomaa, eds.) LNCS 4361, 298–313, 2006.
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A τ -DPP variant: Sτ -DPP

Hybrid structure: combines tissue and tree–like P systems

It exploits dynamics description of τ -DPP

The structure is independent from the communication
channels between membranes. Two different graphs are used
in the description: one to denote the membranes topology
(i.e., membrane structure), and the other one the connections
between membranes which allow the communication of objects

Encompasses sizes of objects and membranes

The set of reactions is enabled only if there is sufficient space

P. Cazzaniga, G. Mauri, L. Milanesi, E. Mosca, D. Pescini, A novel variant of tissue P Systems for the modelling
of biochemical systems, Proceedings of the 10th International Workshop on Membrane Computing, WMC 2009
(G. Paun, M.J. Perez-Jimenez, A. Riscos-Nunez, G. Rozenberg, A. Salomaa, eds.), to appear in LNCS.
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Ras/cAMP/PKA Pathway in the Yeast S. cerevisiae
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Ras/cAMP/PKA Pathway in the Yeast S. cerevisiae

Reaction Reagents Products Constant Module

r1 Ras2 · GDP + Cdc25 Ras2 · GDP · Cdc25 1.0
r2 Ras2 · GDP · Cdc25 Ras2 · GDP + Cdc25 1.0
r3 Ras2 · GDP · Cdc25 Ras2 · Cdc25 + GDP 1.5
r4 Ras2 · Cdc25 + GDP Ras2 · GDP · Cdc25 1.0
r5 Ras2 · Cdc25 + GTP Ras2 · GTP · Cdc25 1.0 Ras2 switch cycle
r6 Ras2 · GTP · Cdc25 Ras2 · Cdc25 + GTP 1.0
r7 Ras2 · GTP · Cdc25 Ras2 · GTP + Cdc25 1.0
r8 Ras2 · GTP + Cdc25 Ras2 · GTP · Cdc25 1.0

r9 Ras2 · GTP + Ira2 Ras2 · GTP · Ira2 3.0 · 10−2

r10 Ras2 · GTP · Ira2 Ras2 · GDP + Ira2 7.0 · 10−1

r11 Ras2 · GTP + CYR1 Ras2 · GTP · CYR1 1.0 · 10−3

r12 Ras2 · GTP · CYR1 + ATP Ras2 · GTP · CYR1 + cAMP 1.0 · 10−5 cAMP synthesis

r13 Ras2 · GTP · CYR1 + Ira2 Ras2 · GDP + CYR1 + Ira2 1.0 · 10−3

r14 cAMP + PKA cAMP · PKA 1.0 · 10−5

r15 cAMP + cAMP · PKA (2cAMP) · PKA 1.0 · 10−5

r16 cAMP + (2cAMP) · PKA (3cAMP) · PKA 1.0 · 10−5

r17 cAMP + (3cAMP) · PKA (4cAMP) · PKA 1.0 · 10−5

r18 (4cAMP) · PKA cAMP + (3cAMP) · PKA 1.0 · 10−1

r19 (3cAMP) · PKA cAMP + (2cAMP) · PKA 1.0 · 10−1

r20 (2cAMP) · PKA cAMP + cAMP · PKA 1.0 · 10−1
PKA activation

r21 cAMP · PKA cAMP + PKA 1.0 · 10−1

r22 (4cAMP) · PKA 2C + 2(R· 2cAMP) 1.0
r23 R · 2cAMP R + 2cAMP 1.0
r24 R + 2 R · C 1.0
r25 2 * (R · C) PKA 1.0
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Ras/cAMP/PKA Pathway in the Yeast S. cerevisiae
r26 C + Pde1 C + Pde1p 1.0 · 10−6

r27 cAMP + Pde1p cAMP · Pde1p 1.0 · 10−1

r28 cAMP · Pde1p cAMP + Pde1p 1.0 · 10−1

r29 cAMP · Pde1p AMP + Pde1p 7.5

r30 Pde1p + PPA2 Pde1 + PPA2 1.0 · 10−4

r31 cAMP + Pde2 cAMP · Pde2 1.0 · 10−4

r32 cAMP · Pde2 cAMP + Pde2 1.0 cAMP degradation
r33 cAMP · Pde2 AMP + Pde2 1.7
r34 C + Cdc25 C + Cdc25p 10

r35 Cdc25p + PPA2 Cdc25 + PPA2 1 · 10−2

r36 Ira2 + C Ira2+ + C 1 · 10−2

r37 Ras2 · GTP + Ira2+ Ras2 · GTP · Ira2+ 0.5

r38 Ras2 · GTP · Ira2+ Ras2 · GTP + Ira2+ 1

r39 Ira2+ Ira2 10

The model involves

39 rules

30 molecular species

2 major feedback

2 Michaelis Menten schemes

P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, S. Colombo, E. Martegani, Modeling and stochastic simulation of
the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for
intracellular guanine nucleotides pools, J. Biotechnology (2007)
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Ras/cAMP/PKA Pathway in the Yeast S. cerevisiae

cAMP response to glucose addition at time 1500 [a.u.]:
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Ras/cAMP/PKA Pathway in the Yeast S. cerevisiae

Effect of different GTP input values on cAMP accumulation (left) and on

Ras2·GTP and PKA activity (right)
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Ras/cAMP/PKA Pathway in the Yeast S. cerevisiae

Sensitivity of Ras2·GTP module
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Microflow reactors

Microflow technology is an important tool to realize molecular
computing:

Topology: composed by several volumes
reactors ! membranes

Communication: objects flow among volumes
channels ! communication rules

Evolution:
chemical reacting process ! multiset rewriting rules

“Noise”: stochastic evolution
µ scale ! τ leaping
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Boolean functions

A

B

C D

B = 0 = b B = 1 = B
A = 0 = a D D
A = 1 = A D d

Reaction Rule Constant

r1 a + b → c 1 · 10−3

r2 a + B → c 1 · 10−3

r3 A + b → c 1 · 10−3

r4 A + B → C 1 · 10−3

r5 c → D 1 · 10−2

r6 C → d 1 · 10−2

r7 a + A→ λ 1 · 10−1

r8 b + B → λ 1 · 10−1

r9 c + C → λ 1 · 10−1

r10 d + D → λ 1 · 10−1

r11 λ→ a c11 ∈ {1, 0}
r12 λ→ A c12 ∈ {1, 0}
r13 λ→ b c13 ∈ {1, 0}
r14 λ→ B c14 ∈ {1, 0}

Inputs: t = 0 {a, B} t = 400 {A, B}
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Fredkin Circuits
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Microtubules

“Microtubules (MTs) can act as tracks to move cellular components based on their polarised filaments, which are

organised in most cells with their minus ends located near the nucleus and their plus ends towards the cellular

periphery.”[Pouton et al.2006]
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Microtubules
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Preferred Communication and Sizes

The influence of a preferred communication:
pure diffusion vs whole microtubule vs sealed microtubule
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Preferred Communication - V0,V7
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Preferred Communication - V1,V3,V2,V6
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Reduced V4 - V0,V7
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Reduced V4 - V1,V3,V5
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Reduced V4 - V2,V4,V6
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BZ Reaction & the Brusselator

The Brusselator(JCP 46 1695) is a theoretical extremely simplified
version (though physically unrealistic) of the BZ
(Belousov-Zhabotinskii) Reaction nowadays recognized as being
the prototype for Chemical Oscillators:

A −→ X

B + X −→ Y + D

2X + Y −→ 3X

X −→ E
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Parameters Influence

c1 = 1

c2 = 5 10−3

c3 = 2.5 10−5

c4 = 1.5

c1 = 1

c2 = 5 10−3

c3 = 2.5 10−4

c4 = 1.5
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Parameters Influence

c1 = 1

c2 = 3.25 10−3

c3 = 2.5 10−5

c4 = 1.5

c1 = 1

c2 = 5 10−3

c3 = 2.5 10−5

c4 = 1.5 10−1
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Combinatorial Optimization Problems

To solve a problem of combinatorial optimization means to
find the “best solution” or “optimum” within a given set of
alternatives solutions

It is mandatory to measure quantitatively the “quality” of
each solution so that a comparison is possible.
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PSO

The particle swarm algorithm has been shown to optimize
hard mathematical problems in continuous or binary space
(Kennedy and Eberhart, 1995; Kennedy and Eberhart, 1997).

Particles, defined as multidimensional points in space, adjust
their trajectories toward their own previous best positions, and
toward the previous best position found by any member of a
topological neighborhood.

The method has been applied to a wide range of testbed
problems, as well as to many applications.
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PSO

A population of particles is initialized with random positions
−→xi and trajectories −→vi , such that −→xi (t) = −→xi (t − 1) +−→vi . At
each time-step, each particle is tested in an evaluation
function (the fitness).

If the present position is better than the previous best then

the current position−→xi is stored in a vector bid . Thus,
−→
bid is

the best position found so far by a particle (individual best).

As each particle is evaluated, the best-performing particle in
its neighborhood is identified and its best position is stored in

the vector
−→
bgd . Thus,

−→
bgd is the best position found so far by

the swarm (global best).

Paolo Cazzaniga Modelling, simulation and analysis of biochemical systems



PSO

vid = w vid + c1 r1(bid − xid) + c2 r2(bgd − xid)

w inertia weight

c1 weight of the individual inheritance

c2 weight of the social inheritance
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Genetic Algorithms

The starting point is a population of individuals (subset of the
solution space) and a fitness function to assess the quality of each
individual.

Iteratively, the “best” individuals are selected at each generation,
and variation techniques are applied to them.

The aim is to get a better adapted set of individuals to the next
generation.
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GA Operators

One point average crossover: returns one offspring that
contains at each position the average values of the parents
chromosomes

Elitism: applied to preserve the fittest individuals

Gaussian mutation: perturbs an allele with a number drawn
from a normal distribution with mean equal to the current
value and σ fixed

Range mutation: increments or decrements an allele of a
prefixed quantity (that is a fraction of the size of the
admissible range)

Reinitialization: changes the value of an allele with an
uniformly distributed random number in the admissible range
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The Goal

We would like to reproduce the target dynamics via stochastic
simulations:
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The Problem

Quantify the “distance” among the dynamics and find the closest
one
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Fitness: Standard Distance
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Fitness: Tricks

Facts related to intrinsic noise that should not be neglected:

each outcome j is quantitatively different {X (τi )}j
not evenly sampled {τi}j
not same number of points
{6= X (τi )}j

in the thermodynamic limit {X (τi )} → [X ](ti )

exploit ensemble behavior (may flatten oscillations, not in
phase outcome)

〈 F (X (τi )) 〉 ?
= F ( 〈X (τi )〉 )

same parameters, possibly (almost always), generate different
values of the fitness function (“weak convergence”)
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Fitness: “Area” Distance
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Fitness: “Area” Distance (refinement)
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Our PSO Implementation

vid = w vid + c1r1(bid − xid) + c2r2(bgd − xid)

PSO1

decreasing w inertia weight plus a Gaussian noise

c1, c2 are independents

PSO2

decreasing w inertia weight plus a Gaussian noise

c1, c2 co-evolve, modified with a Gaussian noise
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Our GA Implementation

Elitism: 1% of the population

Tournament strategy to select the offspring (selection pressure
= 5)

Crossover: gene average to generate the new individuals
(PC = 0.95)

Mutation: uniform or Gaussian with PM ∈ [0.05, 0, 5]
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Comparison GA & PSO: Michaelis Menten
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Comparison GA & PSO: Oscillating Brusselator
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Comparison GA & PSO: Dumped Brusselator
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Ongoing works

Simulation tools

Integration of the notion of membrane potential in τ -DPP
Address parameter reconstruction issue: Genetic Algorithms,
Particle Swarm Optimizer, etc.

Analysis

Tools for the analysis of the system dynamics (i.e. sensitivity
analysis)
Analyse the properties of multi-stable systems
Role of “noise” in Molecular Dynamics-Computing

Modelling of biological systems

Ras/cAMP/PKA signalling pathway in yeast
Signal transduction in bacterial chemotaxis
Neuron cells and synaptic processes
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