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1 Introduction

This paper presents a stochastic fusion calculus suitable to describe systems in-
volving general patterns of interactions. We start from fusion calculus [8] which
is a symmetric generalisation of the π-calculus, and present a rate-based stochas-
tic fusion calculus, providing a concise and compositional way to describe the
behaviour of complex systems by using probability distributions.

We provide the semantics of stochastic fusion calculus by using rate-based
transition systems [4] in the elegant and general variant proposed by De Nicola
et al. [2]. The stochastic nature of the new transition systems is given by the fact
that transition labels represent actions, and the transition result is a function
associating a positive real value to each possible target process, expressing the
stochastic rate of an exponential distribution modelling the duration of the tran-
sition. For two processes running in parallel, we define the distribution of their
synchronisation using their apparent rates. Associativity of parallel composition
is a particularly desirable property either in the context of network and dis-
tributed systems, either in the context of biological systems, where parallel com-
position is often used to model molecular populations. Following the approach
proposed in [2], associativity of the parallel composition operator is guaranteed
in the rate-based stochastic semantics of the fusion calculus (differently to what
happens in the stochastic π-calculus [9] and in a previous formalisation of a
stochastic fusion calculus [1]).

We extend the notion of hyperbisimulation to stochastic fusion calculus, and
prove that the stochastic hyperequivalence is a congruence. The rate-based tran-
sition system resulting from a stochastic fusion process leads the expression of a
continuous time Markov chain which preserves the notion of hyperequivalence.

The modelling power of the stochastic fusion calculus is suggested by an
example where we formalise some of the one-to-many interactions occurring
between a plant root and a particular kind of fungi in the arbuscular mycor-
rhizal symbiosis. A quantitative simulation is performed using the PRISM model
checker on the continuous time Markov chain extracted from the rate-based
transition system describing such interactions by means of stochastic fusion pro-
cesses.
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2 Rate-Based Stochastic Fusion Calculus

The fusion calculus was introduced by Parrow and Victor as a symmetric gener-
alisation of the π-calculus [8]. The π-calculus has two binding operators (prefix
and restriction), the effects of communication are local, and input and output
actions are asymmetric. Unlike the π-calculus, the fusion calculus has only one
binding operator, and the effects of communication are both local and global.
Fusion calculus makes input and output operations fully symmetric: a more ap-
propriate terminology for them might be action and co-action. A fusion is a name
equivalence which allows to use interchangeably all the names of an equivalence
class in a term of the calculus. Computationally, a fusion is generated as the
result of a synchronisation between two complementary actions, and it is prop-
agated to processes running in parallel within the same scope of the fusion. In
practice, the effect of a fusion could be seen as the update of a (global) shared
state. Fusions are suitable to express general patterns of interactions, including
one-to-many and many-to-many interactions. We remind to [8] for details about
the syntax and semantics of the fusion calculus.

Many phenomena which take place in practice are described by non-exponential
distributions, and stochastic fusion calculus could be defined by using general
distributions. For the sake of simplicity, we use here the exponential distribution,
inheriting some properties derived from the memoryless feature of this distribu-
tion: the time at which a state change occurs is independent of the time at which
the last state change occurred. In this way we do not have to keep track of the
past state transitions (e.g. in an implementation).

Following the variant of rate transition systems [4] introduced in [2], we
define the semantics of SFC via a transition relation P

δ−→ ρ associating to a
given process P and a transition action label δ a next state function (NSF)
ρ : SFC → IR≥0.

3 Stochastic Hyperbisimulation

Several papers of the last two decades define Markovian bisimulations, we men-
tion the seminal paper by Larsen and Skou [7]. The definition of stochastic
hyperbisimulation is also related to the notion of lumpability for Markov chains
[5] (also see the next section). Two processes P and Q are lumping equivalent,
and we denote this by P ∼ Q, if the total rate of moving to an equivalence class
S under ∼ is identical for both processes. Lumping equivalence also preserves
stochastic rewards while reducing the size of the underlying stochastic transition
system.

Two processes P and Q are stochastic bisimilar, written P .∼SH Q, if they are
related by a stochastic bisimulation. Stochastic bisimilarity is not a congruence
in the fusion calculus. We therefore look for the largest congruence included in
the stochastic bisimilarity. This is achieved by closing the definition of stochastic
bisimulation under arbitrary substitutions.
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Definition 1 (Stochastic Hyperbisimulation). A stochastic hyperbisimula-
tion is an equivalence relation R over SFC satisfying the following properties:

i) R is closed under any substitution σ, i.e., PRQ implies PσRQσ for any σ;
ii) for each pair (P,Q) ∈ R, for all actions δ, and for all equivalence classes

S ∈ SFC/R, we have γδ(P, S) = γδ(Q,S).

Two processes P and Q are stochastic hyperbisimulation equivalent (or stochas-
tic hyperequivalent) if they are related by a stochastic hyperbisimulation. We
write P ∼SH Q.

The following holds.

Theorem 1. (Congruence) Stochastic hyperequivalence is a congruence, i.e.,
for P,Q ∈ SFC and C ∈ SFC[ ], P ∼SH Q implies C[P ] ∼SH C[Q].

4 Stochastic Fusion Processes as CTMCs

We provide a mechanism to translate the rate-based transition system deriving
from the stochastic semantics into a Continuous Time Markov Chain (CTMC),
providing a wide set of means for automatic verification.

By construction, the following holds.

Theorem 2. Stochastic hyperequivalence preserves strong Markovian bisimu-
lation, i.e., for P,Q ∈ SFC, P ∼SH Q implies that the related CTMCs are
Markovian bisimilar.

5 Modelling the Arbuscular Mycorrhizal Symbiosis

The arbuscular mycorrhizal (AM) symbiosis is an example of association with
high compatibility formed between fungi belonging to the Glomeromycota phy-
lum and the roots of most land plants [3]. AM fungi are obligate symbionts, in
the absence of a host plant, spores of AM fungi germinate and produce a limited
amount of mycelium. The recognition between the two symbionts is driven by the
perception of diffusible signals and, once reached the root surface, the AM fungus
enters in the root, overcomes the epidermal layer and it grows inter-and intra-
cellularly all along the root in order to spread fungal structures. Once inside the
inner layers of the cortical cells the differentiation of specialised, highly branched
intracellular hyphae called arbuscules occur. Arbuscules are considered the ma-
jor site for nutrients exchange between the two organisms. The fungus supply the
host with essential nutrients such as phosphate, nitrate and other minerals from
the soil. In return, AM fungi receive carbohydrates derived from photosynthesis
in the host. AM symbiosis also confers resistance to the plant against pathogens
and environmental stresses. The colonisation of the host plant requires the ac-
complishment of two main events: i) signalling and partner recognition, ii) the
colonisation of root tissues and the development of intraradical fungal structures
leading to a functional symbiosis.
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Fig. 1. The Arbuscular Mycorrhizal symbiosis

The interaction begins with a molecular dialogue between the plant and the
fungus [3]. Host roots release signalling molecules characterised as strigolactones.
Within just a few hours, strigolactones at subnanomolar concentrations induce
alterations in fungal physiology, mitochondrial activity and extensive hyphal
branching (leading the fungal spore to produce hyphae towards the plant root).

The external signal released by AM fungi (called myc factor) is perceived by
a receptor on the plant plasma membrane and is transduced into the cell with
the activation of a symbiotic signalling pathway that lead to the colonisation
process (Pre Penetration Apparatus, PPA).

We model these initial communication between the plant root and AM fungi
with SFC and simulated the resulting CTMC with the PRISM model checker.

An extended report about the work on this paper is available at: http:
//www.di.unito.it/~troina/ictcs12/stocFusion.pdf.
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